@inproceedings{khatoon-etal-2025-fjwu,
title = "{FJWU}{\_}{S}quad at {S}em{E}val-2025 Task 1: An Idiom Visual Understanding Dataset for Idiom Learning",
author = "Khatoon, Maira and
Kiyani, Arooj and
Farid, Tehmina and
Abdul Rauf, Sadaf",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.231/",
pages = "1759--1765",
ISBN = "979-8-89176-273-2",
abstract = "Idiomatic expressions pose difficulties for Natural Language Processing (NLP) because they are noncompositional. In this paper, we propose the Idiom Visual Understanding Dataset (IVUD), a multimodal dataset for idiom understanding using visual and textual representation. For SemEval-2025 Task 1 (AdMIRe), we specifically addressed dataset augmentation using AI-synthesized images and human-directed prompt engineering. We compared the efficacy of vision- and text-based models in ranking images aligned with idiomatic phrases. The results identify the advantages of using multimodal context for enhanced idiom understanding, showcasing how vision-language models perform better than text-only approaches in the detection of idiomaticity."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khatoon-etal-2025-fjwu">
<titleInfo>
<title>FJWU_Squad at SemEval-2025 Task 1: An Idiom Visual Understanding Dataset for Idiom Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maira</namePart>
<namePart type="family">Khatoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arooj</namePart>
<namePart type="family">Kiyani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tehmina</namePart>
<namePart type="family">Farid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadaf</namePart>
<namePart type="family">Abdul Rauf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Idiomatic expressions pose difficulties for Natural Language Processing (NLP) because they are noncompositional. In this paper, we propose the Idiom Visual Understanding Dataset (IVUD), a multimodal dataset for idiom understanding using visual and textual representation. For SemEval-2025 Task 1 (AdMIRe), we specifically addressed dataset augmentation using AI-synthesized images and human-directed prompt engineering. We compared the efficacy of vision- and text-based models in ranking images aligned with idiomatic phrases. The results identify the advantages of using multimodal context for enhanced idiom understanding, showcasing how vision-language models perform better than text-only approaches in the detection of idiomaticity.</abstract>
<identifier type="citekey">khatoon-etal-2025-fjwu</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.231/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1759</start>
<end>1765</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FJWU_Squad at SemEval-2025 Task 1: An Idiom Visual Understanding Dataset for Idiom Learning
%A Khatoon, Maira
%A Kiyani, Arooj
%A Farid, Tehmina
%A Abdul Rauf, Sadaf
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F khatoon-etal-2025-fjwu
%X Idiomatic expressions pose difficulties for Natural Language Processing (NLP) because they are noncompositional. In this paper, we propose the Idiom Visual Understanding Dataset (IVUD), a multimodal dataset for idiom understanding using visual and textual representation. For SemEval-2025 Task 1 (AdMIRe), we specifically addressed dataset augmentation using AI-synthesized images and human-directed prompt engineering. We compared the efficacy of vision- and text-based models in ranking images aligned with idiomatic phrases. The results identify the advantages of using multimodal context for enhanced idiom understanding, showcasing how vision-language models perform better than text-only approaches in the detection of idiomaticity.
%U https://aclanthology.org/2025.semeval-1.231/
%P 1759-1765
Markdown (Informal)
[FJWU_Squad at SemEval-2025 Task 1: An Idiom Visual Understanding Dataset for Idiom Learning](https://aclanthology.org/2025.semeval-1.231/) (Khatoon et al., SemEval 2025)
ACL