@inproceedings{nadeem-etal-2025-exploration,
title = "Exploration Lab {IITK} at {S}em{E}val-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection",
author = "Nadeem, Tafazzul and
Singh, Riyansha and
Pathak, Suyamoon and
Modi, Ashutosh",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.243/",
pages = "1859--1865",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents our approach to SemEval-2025 Task 11 (Track A): Bridging the Gap in Text-Based Emotion Detection, with a focus on multi-label emotion classification for the English dataset. Our methodology leverages an ensemble of transformer-based models, incorporating full fine-tuning along with additional classification layers to enhance predictive performance. Through extensive experimentation, we demonstrate that fine-tuning significantly improves emotion classification accuracy compared to baseline models. Furthermore, we provide an in-depth analysis of the dataset, highlighting key patterns and challenges. The study also evaluates the impact of ensemble modeling on performance, demonstrating its effectiveness in capturing nuanced emotional expressions. Finally, we outline potential directions for further refinement and domain-specific adaptations to enhance model robustness."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nadeem-etal-2025-exploration">
<titleInfo>
<title>Exploration Lab IITK at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tafazzul</namePart>
<namePart type="family">Nadeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Riyansha</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suyamoon</namePart>
<namePart type="family">Pathak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Modi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents our approach to SemEval-2025 Task 11 (Track A): Bridging the Gap in Text-Based Emotion Detection, with a focus on multi-label emotion classification for the English dataset. Our methodology leverages an ensemble of transformer-based models, incorporating full fine-tuning along with additional classification layers to enhance predictive performance. Through extensive experimentation, we demonstrate that fine-tuning significantly improves emotion classification accuracy compared to baseline models. Furthermore, we provide an in-depth analysis of the dataset, highlighting key patterns and challenges. The study also evaluates the impact of ensemble modeling on performance, demonstrating its effectiveness in capturing nuanced emotional expressions. Finally, we outline potential directions for further refinement and domain-specific adaptations to enhance model robustness.</abstract>
<identifier type="citekey">nadeem-etal-2025-exploration</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.243/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1859</start>
<end>1865</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploration Lab IITK at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection
%A Nadeem, Tafazzul
%A Singh, Riyansha
%A Pathak, Suyamoon
%A Modi, Ashutosh
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F nadeem-etal-2025-exploration
%X This paper presents our approach to SemEval-2025 Task 11 (Track A): Bridging the Gap in Text-Based Emotion Detection, with a focus on multi-label emotion classification for the English dataset. Our methodology leverages an ensemble of transformer-based models, incorporating full fine-tuning along with additional classification layers to enhance predictive performance. Through extensive experimentation, we demonstrate that fine-tuning significantly improves emotion classification accuracy compared to baseline models. Furthermore, we provide an in-depth analysis of the dataset, highlighting key patterns and challenges. The study also evaluates the impact of ensemble modeling on performance, demonstrating its effectiveness in capturing nuanced emotional expressions. Finally, we outline potential directions for further refinement and domain-specific adaptations to enhance model robustness.
%U https://aclanthology.org/2025.semeval-1.243/
%P 1859-1865
Markdown (Informal)
[Exploration Lab IITK at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection](https://aclanthology.org/2025.semeval-1.243/) (Nadeem et al., SemEval 2025)
ACL