@inproceedings{deng-etal-2025-ynu,
title = "{YNU}-{HPCC} at {S}em{E}val-2025 Task 6: Using {BERT} Model with {R}-drop for Promise Verification",
author = "Deng, Dehui and
Zhang, You and
Wang, Jin and
Xu, Dan and
Zhang, Xuejie",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.248/",
pages = "1905--1911",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents our participation in the SemEval-2025 task 6: multinational, multilingual, multi-industry promise verification. The SemEval-2025 Task 6 aims to extract Promise Identification, Supporting Evidence, Clarity of the Promise-Evidence Pair, and Timing for Verification from the commitments made to businesses and governments. Use these data to verify whether companies and governments have fulfilled their commitments. In this task, we participated in the English task, whichincluded analysis of numbers in the text, reading comprehension of the text content and multi-label classification. Our model introduces regularization dropout based on Bert-base to focus on the stability of non-target classes, improve the robustness of the model, and ultimately improve the indicators. Our approach obtained competitive results in subtasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deng-etal-2025-ynu">
<titleInfo>
<title>YNU-HPCC at SemEval-2025 Task 6: Using BERT Model with R-drop for Promise Verification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dehui</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">You</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents our participation in the SemEval-2025 task 6: multinational, multilingual, multi-industry promise verification. The SemEval-2025 Task 6 aims to extract Promise Identification, Supporting Evidence, Clarity of the Promise-Evidence Pair, and Timing for Verification from the commitments made to businesses and governments. Use these data to verify whether companies and governments have fulfilled their commitments. In this task, we participated in the English task, whichincluded analysis of numbers in the text, reading comprehension of the text content and multi-label classification. Our model introduces regularization dropout based on Bert-base to focus on the stability of non-target classes, improve the robustness of the model, and ultimately improve the indicators. Our approach obtained competitive results in subtasks.</abstract>
<identifier type="citekey">deng-etal-2025-ynu</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.248/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1905</start>
<end>1911</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at SemEval-2025 Task 6: Using BERT Model with R-drop for Promise Verification
%A Deng, Dehui
%A Zhang, You
%A Wang, Jin
%A Xu, Dan
%A Zhang, Xuejie
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F deng-etal-2025-ynu
%X This paper presents our participation in the SemEval-2025 task 6: multinational, multilingual, multi-industry promise verification. The SemEval-2025 Task 6 aims to extract Promise Identification, Supporting Evidence, Clarity of the Promise-Evidence Pair, and Timing for Verification from the commitments made to businesses and governments. Use these data to verify whether companies and governments have fulfilled their commitments. In this task, we participated in the English task, whichincluded analysis of numbers in the text, reading comprehension of the text content and multi-label classification. Our model introduces regularization dropout based on Bert-base to focus on the stability of non-target classes, improve the robustness of the model, and ultimately improve the indicators. Our approach obtained competitive results in subtasks.
%U https://aclanthology.org/2025.semeval-1.248/
%P 1905-1911
Markdown (Informal)
[YNU-HPCC at SemEval-2025 Task 6: Using BERT Model with R-drop for Promise Verification](https://aclanthology.org/2025.semeval-1.248/) (Deng et al., SemEval 2025)
ACL