@inproceedings{fane-etal-2025-fane,
title = "Fane at {S}em{E}val-2025 Task 10: Zero-Shot Entity Framing with Large Language Models",
author = "Fane, Enfa and
Surdeanu, Mihai and
Blanco, Eduardo and
Corman, Steven",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.251/",
pages = "1924--1934",
ISBN = "979-8-89176-273-2",
abstract = "Understanding how news narratives frame entities is crucial for studying media{'}s impact on societal perceptions of events. In this paper, we evaluate the zero-shot capabilities of large language models (LLMs) in classifying framing roles. Through systematic experimentation, we assess the effects of input context, prompting strategies, and task decomposition. Our findings show that a hierarchical approach of first identifying broad roles and then fine-grained roles, outperforms single-step classification. We also demonstrate that optimal input contexts and prompts vary across task levels, highlighting the need for subtask-specific strategies. We achieve a Main Role Accuracy of 89.4{\%} and an Exact Match Ratio of 34.5{\%}, demonstrating the effectiveness of our approach. Our findings emphasize the importance of tailored prompt design and input context optimization for improving LLM performance in entity framing."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fane-etal-2025-fane">
<titleInfo>
<title>Fane at SemEval-2025 Task 10: Zero-Shot Entity Framing with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enfa</namePart>
<namePart type="family">Fane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Corman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Understanding how news narratives frame entities is crucial for studying media’s impact on societal perceptions of events. In this paper, we evaluate the zero-shot capabilities of large language models (LLMs) in classifying framing roles. Through systematic experimentation, we assess the effects of input context, prompting strategies, and task decomposition. Our findings show that a hierarchical approach of first identifying broad roles and then fine-grained roles, outperforms single-step classification. We also demonstrate that optimal input contexts and prompts vary across task levels, highlighting the need for subtask-specific strategies. We achieve a Main Role Accuracy of 89.4% and an Exact Match Ratio of 34.5%, demonstrating the effectiveness of our approach. Our findings emphasize the importance of tailored prompt design and input context optimization for improving LLM performance in entity framing.</abstract>
<identifier type="citekey">fane-etal-2025-fane</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.251/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1924</start>
<end>1934</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fane at SemEval-2025 Task 10: Zero-Shot Entity Framing with Large Language Models
%A Fane, Enfa
%A Surdeanu, Mihai
%A Blanco, Eduardo
%A Corman, Steven
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F fane-etal-2025-fane
%X Understanding how news narratives frame entities is crucial for studying media’s impact on societal perceptions of events. In this paper, we evaluate the zero-shot capabilities of large language models (LLMs) in classifying framing roles. Through systematic experimentation, we assess the effects of input context, prompting strategies, and task decomposition. Our findings show that a hierarchical approach of first identifying broad roles and then fine-grained roles, outperforms single-step classification. We also demonstrate that optimal input contexts and prompts vary across task levels, highlighting the need for subtask-specific strategies. We achieve a Main Role Accuracy of 89.4% and an Exact Match Ratio of 34.5%, demonstrating the effectiveness of our approach. Our findings emphasize the importance of tailored prompt design and input context optimization for improving LLM performance in entity framing.
%U https://aclanthology.org/2025.semeval-1.251/
%P 1924-1934
Markdown (Informal)
[Fane at SemEval-2025 Task 10: Zero-Shot Entity Framing with Large Language Models](https://aclanthology.org/2025.semeval-1.251/) (Fane et al., SemEval 2025)
ACL