@inproceedings{shenpo-2025-deep,
title = "Deep at {S}em{E}val-2025 Task 11: A Multi-Stage Approach to Emotion Detection",
author = "Shenpo, Dong",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.254/",
pages = "1957--1963",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents a novel text-based emotion detection approach for low-resource languages in SemEval-2025 Task 11. We fine-tuned Google Gemma 2 using tailored data augmentation and Chain-of-Thought prompting. Our method, incorporating supervised fine-tuning and model ensembling, significantly improved multi-label emotion recognition, intensity prediction, and cross-lingual performance. Results show strong performance in diverse low-resource settings. Challenges remain in fine-grained sentiment analysis. Future work will explore advanced data augmentation and knowledge transfer methods. This research demonstrates the potential of large language models for inclusive emotion analysis."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shenpo-2025-deep">
<titleInfo>
<title>Deep at SemEval-2025 Task 11: A Multi-Stage Approach to Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Shenpo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents a novel text-based emotion detection approach for low-resource languages in SemEval-2025 Task 11. We fine-tuned Google Gemma 2 using tailored data augmentation and Chain-of-Thought prompting. Our method, incorporating supervised fine-tuning and model ensembling, significantly improved multi-label emotion recognition, intensity prediction, and cross-lingual performance. Results show strong performance in diverse low-resource settings. Challenges remain in fine-grained sentiment analysis. Future work will explore advanced data augmentation and knowledge transfer methods. This research demonstrates the potential of large language models for inclusive emotion analysis.</abstract>
<identifier type="citekey">shenpo-2025-deep</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.254/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1957</start>
<end>1963</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep at SemEval-2025 Task 11: A Multi-Stage Approach to Emotion Detection
%A Shenpo, Dong
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F shenpo-2025-deep
%X This paper presents a novel text-based emotion detection approach for low-resource languages in SemEval-2025 Task 11. We fine-tuned Google Gemma 2 using tailored data augmentation and Chain-of-Thought prompting. Our method, incorporating supervised fine-tuning and model ensembling, significantly improved multi-label emotion recognition, intensity prediction, and cross-lingual performance. Results show strong performance in diverse low-resource settings. Challenges remain in fine-grained sentiment analysis. Future work will explore advanced data augmentation and knowledge transfer methods. This research demonstrates the potential of large language models for inclusive emotion analysis.
%U https://aclanthology.org/2025.semeval-1.254/
%P 1957-1963
Markdown (Informal)
[Deep at SemEval-2025 Task 11: A Multi-Stage Approach to Emotion Detection](https://aclanthology.org/2025.semeval-1.254/) (Shenpo, SemEval 2025)
ACL