@inproceedings{kumar-etal-2025-indidataminer,
title = "indi{D}ata{M}iner at {S}em{E}val-2025 Task 11: From Text to Emotion: Transformer-Based Models for Emotions Detection in {I}ndian Languages",
author = "Kumar, Saurabh and
Kumar, Sujit and
Singh, Sanasam Ranbir and
Nandi, Sukumar",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.262/",
pages = "2020--2027",
ISBN = "979-8-89176-273-2",
abstract = "Emotion detection is essential for applications like mental health monitoring and social media analysis, yet remains underexplored for Indian languages. This paper presents our system for SemEval-2025 Task 11 (Track A), focusing on multilabel emotion detection in Hindi and Marathi, two widely spoken Indian languages. We fine-tune IndicBERT v2 on the BRIGHTER dataset, achieving F1 scores of 87.37 (Hindi) and 88.32 (Marathi), outperforming baseline models. Our results highlight the effectiveness of fine-tuning a language-specific pretrained model for emotion detection, contributing to advancements in multilingual NLP research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2025-indidataminer">
<titleInfo>
<title>indiDataMiner at SemEval-2025 Task 11: From Text to Emotion: Transformer-Based Models for Emotions Detection in Indian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saurabh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujit</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanasam</namePart>
<namePart type="given">Ranbir</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sukumar</namePart>
<namePart type="family">Nandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Emotion detection is essential for applications like mental health monitoring and social media analysis, yet remains underexplored for Indian languages. This paper presents our system for SemEval-2025 Task 11 (Track A), focusing on multilabel emotion detection in Hindi and Marathi, two widely spoken Indian languages. We fine-tune IndicBERT v2 on the BRIGHTER dataset, achieving F1 scores of 87.37 (Hindi) and 88.32 (Marathi), outperforming baseline models. Our results highlight the effectiveness of fine-tuning a language-specific pretrained model for emotion detection, contributing to advancements in multilingual NLP research.</abstract>
<identifier type="citekey">kumar-etal-2025-indidataminer</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.262/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2020</start>
<end>2027</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T indiDataMiner at SemEval-2025 Task 11: From Text to Emotion: Transformer-Based Models for Emotions Detection in Indian Languages
%A Kumar, Saurabh
%A Kumar, Sujit
%A Singh, Sanasam Ranbir
%A Nandi, Sukumar
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F kumar-etal-2025-indidataminer
%X Emotion detection is essential for applications like mental health monitoring and social media analysis, yet remains underexplored for Indian languages. This paper presents our system for SemEval-2025 Task 11 (Track A), focusing on multilabel emotion detection in Hindi and Marathi, two widely spoken Indian languages. We fine-tune IndicBERT v2 on the BRIGHTER dataset, achieving F1 scores of 87.37 (Hindi) and 88.32 (Marathi), outperforming baseline models. Our results highlight the effectiveness of fine-tuning a language-specific pretrained model for emotion detection, contributing to advancements in multilingual NLP research.
%U https://aclanthology.org/2025.semeval-1.262/
%P 2020-2027
Markdown (Informal)
[indiDataMiner at SemEval-2025 Task 11: From Text to Emotion: Transformer-Based Models for Emotions Detection in Indian Languages](https://aclanthology.org/2025.semeval-1.262/) (Kumar et al., SemEval 2025)
ACL