@inproceedings{le-thin-2025-jellyk,
title = "{J}elly{K} at {S}em{E}val-2025 Task 11: {R}ussian Multi-label Emotion Detection with Pre-trained {BERT}-based Language Models",
author = "Le, Khoa and
Thin, Dang",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.272/",
pages = "2090--2095",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents our approach for SemEval-2025 Task 11, we focus on on multi-label emotion detection in Russian text (track A). We preprocess the data by handling special characters, punctuation, and emotive expressions to improve feature-label relationships. To select the best model performance, we fine-tune various pre-trained language models specialized in Russian and evaluate them using K-FOLD Cross-Validation. Our results indicated that ruRoberta-large achieved the best Macro F1-score among tested models. Finally, our system achieved fifth place in the unofficial competition ranking."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-thin-2025-jellyk">
<titleInfo>
<title>JellyK at SemEval-2025 Task 11: Russian Multi-label Emotion Detection with Pre-trained BERT-based Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Khoa</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dang</namePart>
<namePart type="family">Thin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents our approach for SemEval-2025 Task 11, we focus on on multi-label emotion detection in Russian text (track A). We preprocess the data by handling special characters, punctuation, and emotive expressions to improve feature-label relationships. To select the best model performance, we fine-tune various pre-trained language models specialized in Russian and evaluate them using K-FOLD Cross-Validation. Our results indicated that ruRoberta-large achieved the best Macro F1-score among tested models. Finally, our system achieved fifth place in the unofficial competition ranking.</abstract>
<identifier type="citekey">le-thin-2025-jellyk</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.272/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2090</start>
<end>2095</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JellyK at SemEval-2025 Task 11: Russian Multi-label Emotion Detection with Pre-trained BERT-based Language Models
%A Le, Khoa
%A Thin, Dang
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F le-thin-2025-jellyk
%X This paper presents our approach for SemEval-2025 Task 11, we focus on on multi-label emotion detection in Russian text (track A). We preprocess the data by handling special characters, punctuation, and emotive expressions to improve feature-label relationships. To select the best model performance, we fine-tune various pre-trained language models specialized in Russian and evaluate them using K-FOLD Cross-Validation. Our results indicated that ruRoberta-large achieved the best Macro F1-score among tested models. Finally, our system achieved fifth place in the unofficial competition ranking.
%U https://aclanthology.org/2025.semeval-1.272/
%P 2090-2095
Markdown (Informal)
[JellyK at SemEval-2025 Task 11: Russian Multi-label Emotion Detection with Pre-trained BERT-based Language Models](https://aclanthology.org/2025.semeval-1.272/) (Le & Thin, SemEval 2025)
ACL