@inproceedings{clymo-etal-2025-ucsc,
title = "{UCSC} {NLP} T6 at {S}em{E}val-2025 Task 1: Leveraging {LLM}s and {VLM}s for Idiomatic Understanding",
author = "Clymo, Judith and
Zernik, Adam and
Gaur, Shubham",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.274/",
pages = "2103--2115",
ISBN = "979-8-89176-273-2",
abstract = "Idiomatic expressions pose a significant challenge for natural language models due to their non-compositional nature. In this work, we address Subtask 1 of the SemEval-2025 Task 1 (ADMIRE), which requires distinguishing between idiomatic and literal usages of phrases and identify images that align with the relevant meaning.Our approach integrates large language models (LLMs) and vision-language models, and we show how different prompting techniques improve those models' ability to identify and explain the meaning of idiomatic language."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="clymo-etal-2025-ucsc">
<titleInfo>
<title>UCSC NLP T6 at SemEval-2025 Task 1: Leveraging LLMs and VLMs for Idiomatic Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Clymo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Zernik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="family">Gaur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Idiomatic expressions pose a significant challenge for natural language models due to their non-compositional nature. In this work, we address Subtask 1 of the SemEval-2025 Task 1 (ADMIRE), which requires distinguishing between idiomatic and literal usages of phrases and identify images that align with the relevant meaning.Our approach integrates large language models (LLMs) and vision-language models, and we show how different prompting techniques improve those models’ ability to identify and explain the meaning of idiomatic language.</abstract>
<identifier type="citekey">clymo-etal-2025-ucsc</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.274/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2103</start>
<end>2115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UCSC NLP T6 at SemEval-2025 Task 1: Leveraging LLMs and VLMs for Idiomatic Understanding
%A Clymo, Judith
%A Zernik, Adam
%A Gaur, Shubham
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F clymo-etal-2025-ucsc
%X Idiomatic expressions pose a significant challenge for natural language models due to their non-compositional nature. In this work, we address Subtask 1 of the SemEval-2025 Task 1 (ADMIRE), which requires distinguishing between idiomatic and literal usages of phrases and identify images that align with the relevant meaning.Our approach integrates large language models (LLMs) and vision-language models, and we show how different prompting techniques improve those models’ ability to identify and explain the meaning of idiomatic language.
%U https://aclanthology.org/2025.semeval-1.274/
%P 2103-2115
Markdown (Informal)
[UCSC NLP T6 at SemEval-2025 Task 1: Leveraging LLMs and VLMs for Idiomatic Understanding](https://aclanthology.org/2025.semeval-1.274/) (Clymo et al., SemEval 2025)
ACL