@inproceedings{r-etal-2025-scottyposeidon,
title = "{S}cotty{P}oseidon at {S}em{E}val-2025 Task 8: {LLM}-Driven Code Generation for Zero-Shot Question Answering on Tabular Data",
author = "R, Raghav and
Vemali, Adarsh Prakash and
Aswal, Darpan and
Ramesh, Rahul and
Bhupal, Ayush",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.285/",
pages = "2197--2204",
ISBN = "979-8-89176-273-2",
abstract = "Tabular Question Answering (QA) is crucial for enabling automated reasoning over structured data, facilitating efficient information retrieval and decision-making across domains like finance, healthcare, and scientific research. This paper describes our system for the SemEval 2025 Task 8 on Question Answering over Tabular Data, specifically focusing on the DataBench QA and DataBench Lite QA subtasks. Our approach involves generating Python code using Large Language Models (LLMs) to extract answers from tabular data in a zero-shot setting. We investigate both multi-step Chain-of-Thought (CoT) and unified LLM approaches, where the latter demonstrates superior performance by minimizing error propagation and enhancing system stability. Our system prioritizes computational efficiency and scalability by minimizing the input data provided to the LLM, optimizing its ability to contextualize information effectively. We achieve this by sampling a minimal set of rows from the dataset and utilizing external execution with Python and Pandas to maintain efficiency. Our system achieved the highest accuracy amongst all small open-source models, ranking 1st in both subtasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="r-etal-2025-scottyposeidon">
<titleInfo>
<title>ScottyPoseidon at SemEval-2025 Task 8: LLM-Driven Code Generation for Zero-Shot Question Answering on Tabular Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raghav</namePart>
<namePart type="family">R</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adarsh</namePart>
<namePart type="given">Prakash</namePart>
<namePart type="family">Vemali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Darpan</namePart>
<namePart type="family">Aswal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahul</namePart>
<namePart type="family">Ramesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Bhupal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Tabular Question Answering (QA) is crucial for enabling automated reasoning over structured data, facilitating efficient information retrieval and decision-making across domains like finance, healthcare, and scientific research. This paper describes our system for the SemEval 2025 Task 8 on Question Answering over Tabular Data, specifically focusing on the DataBench QA and DataBench Lite QA subtasks. Our approach involves generating Python code using Large Language Models (LLMs) to extract answers from tabular data in a zero-shot setting. We investigate both multi-step Chain-of-Thought (CoT) and unified LLM approaches, where the latter demonstrates superior performance by minimizing error propagation and enhancing system stability. Our system prioritizes computational efficiency and scalability by minimizing the input data provided to the LLM, optimizing its ability to contextualize information effectively. We achieve this by sampling a minimal set of rows from the dataset and utilizing external execution with Python and Pandas to maintain efficiency. Our system achieved the highest accuracy amongst all small open-source models, ranking 1st in both subtasks.</abstract>
<identifier type="citekey">r-etal-2025-scottyposeidon</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.285/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2197</start>
<end>2204</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ScottyPoseidon at SemEval-2025 Task 8: LLM-Driven Code Generation for Zero-Shot Question Answering on Tabular Data
%A R, Raghav
%A Vemali, Adarsh Prakash
%A Aswal, Darpan
%A Ramesh, Rahul
%A Bhupal, Ayush
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F r-etal-2025-scottyposeidon
%X Tabular Question Answering (QA) is crucial for enabling automated reasoning over structured data, facilitating efficient information retrieval and decision-making across domains like finance, healthcare, and scientific research. This paper describes our system for the SemEval 2025 Task 8 on Question Answering over Tabular Data, specifically focusing on the DataBench QA and DataBench Lite QA subtasks. Our approach involves generating Python code using Large Language Models (LLMs) to extract answers from tabular data in a zero-shot setting. We investigate both multi-step Chain-of-Thought (CoT) and unified LLM approaches, where the latter demonstrates superior performance by minimizing error propagation and enhancing system stability. Our system prioritizes computational efficiency and scalability by minimizing the input data provided to the LLM, optimizing its ability to contextualize information effectively. We achieve this by sampling a minimal set of rows from the dataset and utilizing external execution with Python and Pandas to maintain efficiency. Our system achieved the highest accuracy amongst all small open-source models, ranking 1st in both subtasks.
%U https://aclanthology.org/2025.semeval-1.285/
%P 2197-2204
Markdown (Informal)
[ScottyPoseidon at SemEval-2025 Task 8: LLM-Driven Code Generation for Zero-Shot Question Answering on Tabular Data](https://aclanthology.org/2025.semeval-1.285/) (R et al., SemEval 2025)
ACL