@inproceedings{perez-lares-2025-shouth,
title = "Shouth {NLP} at {S}em{E}val-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning",
author = "P{\'e}rez, Juan and
Lares, Santiago",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.295/",
pages = "2265--2269",
ISBN = "979-8-89176-273-2",
abstract = "We present a multilingual fact-checking re-trieval system for the SemEval-2025 task ofmatching social media posts with relevant factchecks. Our approach utilizes a contrastivelearning framework built on the multilingual E5model architecture, fine-tuned on the provideddataset. The system achieves a Success@10score of 0.867 on the official test set, with per-formance variations between languages. Wedemonstrate that input prefixes and language-specific corpus filtering significantly improveretrieval performance. Our analysis reveals in-teresting patterns in cross-lingual transfer, withspecifically strong results on Malaysian andThai languages. We make our code public forfurther research and development."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perez-lares-2025-shouth">
<titleInfo>
<title>Shouth NLP at SemEval-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pérez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santiago</namePart>
<namePart type="family">Lares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>We present a multilingual fact-checking re-trieval system for the SemEval-2025 task ofmatching social media posts with relevant factchecks. Our approach utilizes a contrastivelearning framework built on the multilingual E5model architecture, fine-tuned on the provideddataset. The system achieves a Success@10score of 0.867 on the official test set, with per-formance variations between languages. Wedemonstrate that input prefixes and language-specific corpus filtering significantly improveretrieval performance. Our analysis reveals in-teresting patterns in cross-lingual transfer, withspecifically strong results on Malaysian andThai languages. We make our code public forfurther research and development.</abstract>
<identifier type="citekey">perez-lares-2025-shouth</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.295/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2265</start>
<end>2269</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Shouth NLP at SemEval-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning
%A Pérez, Juan
%A Lares, Santiago
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F perez-lares-2025-shouth
%X We present a multilingual fact-checking re-trieval system for the SemEval-2025 task ofmatching social media posts with relevant factchecks. Our approach utilizes a contrastivelearning framework built on the multilingual E5model architecture, fine-tuned on the provideddataset. The system achieves a Success@10score of 0.867 on the official test set, with per-formance variations between languages. Wedemonstrate that input prefixes and language-specific corpus filtering significantly improveretrieval performance. Our analysis reveals in-teresting patterns in cross-lingual transfer, withspecifically strong results on Malaysian andThai languages. We make our code public forfurther research and development.
%U https://aclanthology.org/2025.semeval-1.295/
%P 2265-2269
Markdown (Informal)
[Shouth NLP at SemEval-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning](https://aclanthology.org/2025.semeval-1.295/) (Pérez & Lares, SemEval 2025)
ACL