@inproceedings{fan-etal-2025-ctyun,
title = "{CTYUN}-{AI} at {S}em{E}val-2025 Task 1: Learning to Rank for Idiomatic Expressions",
author = "Fan, Yuming and
Yang, Dongming and
Cai, Zefeng and
Lin, Binghuai",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.3/",
pages = "16--19",
ISBN = "979-8-89176-273-2",
abstract = "We propose a multimodal framework integrating textual context and image caption analysis via systematic data augmentation and parameter-efficient fine-tuning. Our approach features: (1) option shuffling to eliminate positional bias, (2) lexical augmentation through synonym replacement and back-translation, and (3) optimized cross-modal ranking adaptation. The system ranks first in Portuguese (Top-1 Acc: 0.92) and second in English (Top-1 Acc: 0.87) on CodaBench. Experiments across 7B-72B models reveal 32B architectures achieve optimal capacity-trainability balance, while larger 72B models suffer from overfitting. Results demonstrate the limitations of GPT-4 knowledge distillation and emphasize controlled data augmentation for idiomatic language learning, advancing multimodal figurative language processing techniques."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fan-etal-2025-ctyun">
<titleInfo>
<title>CTYUN-AI at SemEval-2025 Task 1: Learning to Rank for Idiomatic Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuming</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongming</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zefeng</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binghuai</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>We propose a multimodal framework integrating textual context and image caption analysis via systematic data augmentation and parameter-efficient fine-tuning. Our approach features: (1) option shuffling to eliminate positional bias, (2) lexical augmentation through synonym replacement and back-translation, and (3) optimized cross-modal ranking adaptation. The system ranks first in Portuguese (Top-1 Acc: 0.92) and second in English (Top-1 Acc: 0.87) on CodaBench. Experiments across 7B-72B models reveal 32B architectures achieve optimal capacity-trainability balance, while larger 72B models suffer from overfitting. Results demonstrate the limitations of GPT-4 knowledge distillation and emphasize controlled data augmentation for idiomatic language learning, advancing multimodal figurative language processing techniques.</abstract>
<identifier type="citekey">fan-etal-2025-ctyun</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.3/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>16</start>
<end>19</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CTYUN-AI at SemEval-2025 Task 1: Learning to Rank for Idiomatic Expressions
%A Fan, Yuming
%A Yang, Dongming
%A Cai, Zefeng
%A Lin, Binghuai
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F fan-etal-2025-ctyun
%X We propose a multimodal framework integrating textual context and image caption analysis via systematic data augmentation and parameter-efficient fine-tuning. Our approach features: (1) option shuffling to eliminate positional bias, (2) lexical augmentation through synonym replacement and back-translation, and (3) optimized cross-modal ranking adaptation. The system ranks first in Portuguese (Top-1 Acc: 0.92) and second in English (Top-1 Acc: 0.87) on CodaBench. Experiments across 7B-72B models reveal 32B architectures achieve optimal capacity-trainability balance, while larger 72B models suffer from overfitting. Results demonstrate the limitations of GPT-4 knowledge distillation and emphasize controlled data augmentation for idiomatic language learning, advancing multimodal figurative language processing techniques.
%U https://aclanthology.org/2025.semeval-1.3/
%P 16-19
Markdown (Informal)
[CTYUN-AI at SemEval-2025 Task 1: Learning to Rank for Idiomatic Expressions](https://aclanthology.org/2025.semeval-1.3/) (Fan et al., SemEval 2025)
ACL