@inproceedings{abootorabi-etal-2025-multimind,
title = "{M}ulti{M}ind at {S}em{E}val-2025 Task 7: Crosslingual Fact-Checked Claim Retrieval via Multi-Source Alignment",
author = "Abootorabi, Mohammad Mahdi and
Ghahramani Kure, Alireza and
Mohammadkhani, Mohammadali and
Elahimanesh, Sina and
Ali Panah, Mohammad Ali",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.303/",
pages = "2325--2335",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents our system for SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval. In an era where misinformation spreads rapidly, effective fact-checking is increasingly critical. We introduce {\{}textbf{\{}TriAligner{\}}{\}}, a novel approach that leverages a dual-encoder architecture with contrastive learning and incorporates both native and English translations across different modalities. Our method effectively retrieves claims across multiple languages by learning the relative importance of different sources in alignment. To enhance robustness, we employ efficient data preprocessing and augmentation using large language models while incorporating hard negative sampling to improve representation learning. We evaluate our approach on monolingual and crosslingual benchmarks, demonstrating significant improvements in retrieval accuracy and fact-checking performance over baselines."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abootorabi-etal-2025-multimind">
<titleInfo>
<title>MultiMind at SemEval-2025 Task 7: Crosslingual Fact-Checked Claim Retrieval via Multi-Source Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Mahdi</namePart>
<namePart type="family">Abootorabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alireza</namePart>
<namePart type="family">Ghahramani Kure</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammadali</namePart>
<namePart type="family">Mohammadkhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Elahimanesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Ali</namePart>
<namePart type="family">Ali Panah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents our system for SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval. In an era where misinformation spreads rapidly, effective fact-checking is increasingly critical. We introduce {textbf{TriAligner}}, a novel approach that leverages a dual-encoder architecture with contrastive learning and incorporates both native and English translations across different modalities. Our method effectively retrieves claims across multiple languages by learning the relative importance of different sources in alignment. To enhance robustness, we employ efficient data preprocessing and augmentation using large language models while incorporating hard negative sampling to improve representation learning. We evaluate our approach on monolingual and crosslingual benchmarks, demonstrating significant improvements in retrieval accuracy and fact-checking performance over baselines.</abstract>
<identifier type="citekey">abootorabi-etal-2025-multimind</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.303/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2325</start>
<end>2335</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MultiMind at SemEval-2025 Task 7: Crosslingual Fact-Checked Claim Retrieval via Multi-Source Alignment
%A Abootorabi, Mohammad Mahdi
%A Ghahramani Kure, Alireza
%A Mohammadkhani, Mohammadali
%A Elahimanesh, Sina
%A Ali Panah, Mohammad Ali
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F abootorabi-etal-2025-multimind
%X This paper presents our system for SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval. In an era where misinformation spreads rapidly, effective fact-checking is increasingly critical. We introduce {textbf{TriAligner}}, a novel approach that leverages a dual-encoder architecture with contrastive learning and incorporates both native and English translations across different modalities. Our method effectively retrieves claims across multiple languages by learning the relative importance of different sources in alignment. To enhance robustness, we employ efficient data preprocessing and augmentation using large language models while incorporating hard negative sampling to improve representation learning. We evaluate our approach on monolingual and crosslingual benchmarks, demonstrating significant improvements in retrieval accuracy and fact-checking performance over baselines.
%U https://aclanthology.org/2025.semeval-1.303/
%P 2325-2335Markdown (Informal)
[MultiMind at SemEval-2025 Task 7: Crosslingual Fact-Checked Claim Retrieval via Multi-Source Alignment](https://aclanthology.org/2025.semeval-1.303/) (Abootorabi et al., SemEval 2025)
ACL