@inproceedings{skottis-etal-2025-ragthoven,
title = "{RAG}thoven at {S}em{E}val 2025 - Task 2: Enhancing Entity-Aware Machine Translation with Large Language Models, Retrieval Augmented Generation and Function Calling",
author = "Skottis, Demetris and
Karetka, Gregor and
Suppa, Marek",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.305/",
pages = "2342--2351",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents a system for SemEval 2025 Task 2 on entity-aware machine translation, integrating GPT-4o with Wikidata-based translations, retrieval augmented generation (RAG), and function calling. Implemented in RAGthoven, a lightweight yet powerful toolkit, our approach enriches source sentences with real-time external knowledge to address challenging or culturally specific named entities. Experiments on English-to-ten target languages show notable gains in translation quality, illustrating how LLM-based translation pipelines can leverage knowledge sources with minimal overhead. Its simplicity makes it a strong baseline for future research in entity-focused machine translation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="skottis-etal-2025-ragthoven">
<titleInfo>
<title>RAGthoven at SemEval 2025 - Task 2: Enhancing Entity-Aware Machine Translation with Large Language Models, Retrieval Augmented Generation and Function Calling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Demetris</namePart>
<namePart type="family">Skottis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gregor</namePart>
<namePart type="family">Karetka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Suppa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents a system for SemEval 2025 Task 2 on entity-aware machine translation, integrating GPT-4o with Wikidata-based translations, retrieval augmented generation (RAG), and function calling. Implemented in RAGthoven, a lightweight yet powerful toolkit, our approach enriches source sentences with real-time external knowledge to address challenging or culturally specific named entities. Experiments on English-to-ten target languages show notable gains in translation quality, illustrating how LLM-based translation pipelines can leverage knowledge sources with minimal overhead. Its simplicity makes it a strong baseline for future research in entity-focused machine translation.</abstract>
<identifier type="citekey">skottis-etal-2025-ragthoven</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.305/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2342</start>
<end>2351</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RAGthoven at SemEval 2025 - Task 2: Enhancing Entity-Aware Machine Translation with Large Language Models, Retrieval Augmented Generation and Function Calling
%A Skottis, Demetris
%A Karetka, Gregor
%A Suppa, Marek
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F skottis-etal-2025-ragthoven
%X This paper presents a system for SemEval 2025 Task 2 on entity-aware machine translation, integrating GPT-4o with Wikidata-based translations, retrieval augmented generation (RAG), and function calling. Implemented in RAGthoven, a lightweight yet powerful toolkit, our approach enriches source sentences with real-time external knowledge to address challenging or culturally specific named entities. Experiments on English-to-ten target languages show notable gains in translation quality, illustrating how LLM-based translation pipelines can leverage knowledge sources with minimal overhead. Its simplicity makes it a strong baseline for future research in entity-focused machine translation.
%U https://aclanthology.org/2025.semeval-1.305/
%P 2342-2351
Markdown (Informal)
[RAGthoven at SemEval 2025 - Task 2: Enhancing Entity-Aware Machine Translation with Large Language Models, Retrieval Augmented Generation and Function Calling](https://aclanthology.org/2025.semeval-1.305/) (Skottis et al., SemEval 2025)
ACL