@inproceedings{singh-etal-2025-silp,
title = "silp{\_}nlp at {S}em{E}val-2025 Task 2: An Effect of Entity Awareness in Machine Translation Using {LLM}",
author = "Singh, Sumit and
Goyal, Pankaj and
Tiwary, Uma",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.310/",
pages = "2389--2394",
ISBN = "979-8-89176-273-2",
abstract = "In this study, we investigated the effect of entity awareness on machine translation (MT) using large language models (LLMs). Our approach utilized GPT-4o and NLLB-200, integrating named entity recognition (NER) to improve translation quality. The results indicated that incorporating entity information enhanced translation accuracy, especially when dealing with named entities. However, performance was highly dependent on the effectiveness of the NER model."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2025-silp">
<titleInfo>
<title>silp_nlp at SemEval-2025 Task 2: An Effect of Entity Awareness in Machine Translation Using LLM</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sumit</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pankaj</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Uma</namePart>
<namePart type="family">Tiwary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>In this study, we investigated the effect of entity awareness on machine translation (MT) using large language models (LLMs). Our approach utilized GPT-4o and NLLB-200, integrating named entity recognition (NER) to improve translation quality. The results indicated that incorporating entity information enhanced translation accuracy, especially when dealing with named entities. However, performance was highly dependent on the effectiveness of the NER model.</abstract>
<identifier type="citekey">singh-etal-2025-silp</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.310/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2389</start>
<end>2394</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T silp_nlp at SemEval-2025 Task 2: An Effect of Entity Awareness in Machine Translation Using LLM
%A Singh, Sumit
%A Goyal, Pankaj
%A Tiwary, Uma
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F singh-etal-2025-silp
%X In this study, we investigated the effect of entity awareness on machine translation (MT) using large language models (LLMs). Our approach utilized GPT-4o and NLLB-200, integrating named entity recognition (NER) to improve translation quality. The results indicated that incorporating entity information enhanced translation accuracy, especially when dealing with named entities. However, performance was highly dependent on the effectiveness of the NER model.
%U https://aclanthology.org/2025.semeval-1.310/
%P 2389-2394
Markdown (Informal)
[silp_nlp at SemEval-2025 Task 2: An Effect of Entity Awareness in Machine Translation Using LLM](https://aclanthology.org/2025.semeval-1.310/) (Singh et al., SemEval 2025)
ACL