@inproceedings{hahn-2025-jim,
title = "Jim at {S}em{E}val-2025 Task 5: Multilingual {BERT} Ensemble",
author = "Hahn, Jim",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.313/",
pages = "2407--2412",
ISBN = "979-8-89176-273-2",
abstract = "The SemEval-2025 Task 5 calls for the utilization of LLM capabilities to apply controlled subject labels to record descriptions in the multilingual library collection of the German National Library of Science and Technology. The multilingual BERT ensemble system described herein produces subject labels for various record types, including articles, books, conference papers, reports, and theses. Results indicate that for English language article records, bidirectional encoder-only LLMs can achieve high recall in automated subject assignment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hahn-2025-jim">
<titleInfo>
<title>Jim at SemEval-2025 Task 5: Multilingual BERT Ensemble</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jim</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>The SemEval-2025 Task 5 calls for the utilization of LLM capabilities to apply controlled subject labels to record descriptions in the multilingual library collection of the German National Library of Science and Technology. The multilingual BERT ensemble system described herein produces subject labels for various record types, including articles, books, conference papers, reports, and theses. Results indicate that for English language article records, bidirectional encoder-only LLMs can achieve high recall in automated subject assignment.</abstract>
<identifier type="citekey">hahn-2025-jim</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.313/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2407</start>
<end>2412</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Jim at SemEval-2025 Task 5: Multilingual BERT Ensemble
%A Hahn, Jim
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F hahn-2025-jim
%X The SemEval-2025 Task 5 calls for the utilization of LLM capabilities to apply controlled subject labels to record descriptions in the multilingual library collection of the German National Library of Science and Technology. The multilingual BERT ensemble system described herein produces subject labels for various record types, including articles, books, conference papers, reports, and theses. Results indicate that for English language article records, bidirectional encoder-only LLMs can achieve high recall in automated subject assignment.
%U https://aclanthology.org/2025.semeval-1.313/
%P 2407-2412
Markdown (Informal)
[Jim at SemEval-2025 Task 5: Multilingual BERT Ensemble](https://aclanthology.org/2025.semeval-1.313/) (Hahn, SemEval 2025)
ACL