@inproceedings{pickard-etal-2025-semeval,
title = "{S}em{E}val-2025 Task 1: {A}d{MIR}e - Advancing Multimodal Idiomaticity Representation",
author = "Pickard, Thomas and
Villavicencio, Aline and
Mi, Maggie and
He, Wei and
Phelps, Dylan and
Idiart, Marco",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.330/",
pages = "2597--2609",
ISBN = "979-8-89176-273-2",
abstract = "Idiomatic expressions present a unique challenge in NLP, as their meanings are often notdirectly inferable from their constituent words. Despite recent advancements in Large LanguageModels (LLMs), idiomaticity remains a significant obstacle to robust semantic representation.We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pickard-etal-2025-semeval">
<titleInfo>
<title>SemEval-2025 Task 1: AdMIRe - Advancing Multimodal Idiomaticity Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Pickard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maggie</namePart>
<namePart type="family">Mi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dylan</namePart>
<namePart type="family">Phelps</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Idiart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Idiomatic expressions present a unique challenge in NLP, as their meanings are often notdirectly inferable from their constituent words. Despite recent advancements in Large LanguageModels (LLMs), idiomaticity remains a significant obstacle to robust semantic representation.We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models’ ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models’ representations of idiomaticity.</abstract>
<identifier type="citekey">pickard-etal-2025-semeval</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.330/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>2597</start>
<end>2609</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SemEval-2025 Task 1: AdMIRe - Advancing Multimodal Idiomaticity Representation
%A Pickard, Thomas
%A Villavicencio, Aline
%A Mi, Maggie
%A He, Wei
%A Phelps, Dylan
%A Idiart, Marco
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F pickard-etal-2025-semeval
%X Idiomatic expressions present a unique challenge in NLP, as their meanings are often notdirectly inferable from their constituent words. Despite recent advancements in Large LanguageModels (LLMs), idiomaticity remains a significant obstacle to robust semantic representation.We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models’ ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models’ representations of idiomaticity.
%U https://aclanthology.org/2025.semeval-1.330/
%P 2597-2609
Markdown (Informal)
[SemEval-2025 Task 1: AdMIRe - Advancing Multimodal Idiomaticity Representation](https://aclanthology.org/2025.semeval-1.330/) (Pickard et al., SemEval 2025)
ACL