@inproceedings{wastl-etal-2025-uzh,
title = "{UZH} at {S}em{E}val-2025 Task 3: Token-Level Self-Consistency for Hallucination Detection",
author = "Wastl, Michelle and
Vamvas, Jannis and
Sennrich, Rico",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.38/",
pages = "257--270",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents our system developed for the SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The objective of this task is to identify spans of hallucinated text in the output of large language models across 14 high- and low- resource languages. To address this challenge, we propose two consistency-based approaches: (a) token-level consistency with a superior LLM and (b) token-level self-consistency with the underlying model of the sequence that is to be evaluated. Our results show effectiveness when compared to simple mark-all baselines, competitiveness to other submissions of the shared task and for some languages to GPT4o- mini prompt-based approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wastl-etal-2025-uzh">
<titleInfo>
<title>UZH at SemEval-2025 Task 3: Token-Level Self-Consistency for Hallucination Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Wastl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jannis</namePart>
<namePart type="family">Vamvas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rico</namePart>
<namePart type="family">Sennrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents our system developed for the SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The objective of this task is to identify spans of hallucinated text in the output of large language models across 14 high- and low- resource languages. To address this challenge, we propose two consistency-based approaches: (a) token-level consistency with a superior LLM and (b) token-level self-consistency with the underlying model of the sequence that is to be evaluated. Our results show effectiveness when compared to simple mark-all baselines, competitiveness to other submissions of the shared task and for some languages to GPT4o- mini prompt-based approaches.</abstract>
<identifier type="citekey">wastl-etal-2025-uzh</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.38/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>257</start>
<end>270</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UZH at SemEval-2025 Task 3: Token-Level Self-Consistency for Hallucination Detection
%A Wastl, Michelle
%A Vamvas, Jannis
%A Sennrich, Rico
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F wastl-etal-2025-uzh
%X This paper presents our system developed for the SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The objective of this task is to identify spans of hallucinated text in the output of large language models across 14 high- and low- resource languages. To address this challenge, we propose two consistency-based approaches: (a) token-level consistency with a superior LLM and (b) token-level self-consistency with the underlying model of the sequence that is to be evaluated. Our results show effectiveness when compared to simple mark-all baselines, competitiveness to other submissions of the shared task and for some languages to GPT4o- mini prompt-based approaches.
%U https://aclanthology.org/2025.semeval-1.38/
%P 257-270
Markdown (Informal)
[UZH at SemEval-2025 Task 3: Token-Level Self-Consistency for Hallucination Detection](https://aclanthology.org/2025.semeval-1.38/) (Wastl et al., SemEval 2025)
ACL