@inproceedings{robertson-liang-2025-ncl,
title = "{NCL}-{AR} at {S}em{E}val-2025 Task 7: A Sieve Filtering Approach to Refute the Misinformation within Harmful Social Media Posts",
author = "Robertson, Alex and
Liang, Huizhi(elly)",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.44/",
pages = "308--313",
ISBN = "979-8-89176-273-2",
abstract = "In this paper, we propose a sieve filtering-based approach that can retrieve facts to invalidate claims made in social media posts. The fact filters are initially coarse-grained, based on the original language of the social media posts, and end with fine-grained filters based on the exact time frame in which the posts were uploaded online. This streamlined approach achieved a 0.883 retrieval success rate in the monolingual task while maintaining a scalable efficiency level of processing a social media post per 0.07 seconds."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="robertson-liang-2025-ncl">
<titleInfo>
<title>NCL-AR at SemEval-2025 Task 7: A Sieve Filtering Approach to Refute the Misinformation within Harmful Social Media Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Robertson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huizhi(elly)</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>In this paper, we propose a sieve filtering-based approach that can retrieve facts to invalidate claims made in social media posts. The fact filters are initially coarse-grained, based on the original language of the social media posts, and end with fine-grained filters based on the exact time frame in which the posts were uploaded online. This streamlined approach achieved a 0.883 retrieval success rate in the monolingual task while maintaining a scalable efficiency level of processing a social media post per 0.07 seconds.</abstract>
<identifier type="citekey">robertson-liang-2025-ncl</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.44/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>308</start>
<end>313</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NCL-AR at SemEval-2025 Task 7: A Sieve Filtering Approach to Refute the Misinformation within Harmful Social Media Posts
%A Robertson, Alex
%A Liang, Huizhi(elly)
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F robertson-liang-2025-ncl
%X In this paper, we propose a sieve filtering-based approach that can retrieve facts to invalidate claims made in social media posts. The fact filters are initially coarse-grained, based on the original language of the social media posts, and end with fine-grained filters based on the exact time frame in which the posts were uploaded online. This streamlined approach achieved a 0.883 retrieval success rate in the monolingual task while maintaining a scalable efficiency level of processing a social media post per 0.07 seconds.
%U https://aclanthology.org/2025.semeval-1.44/
%P 308-313
Markdown (Informal)
[NCL-AR at SemEval-2025 Task 7: A Sieve Filtering Approach to Refute the Misinformation within Harmful Social Media Posts](https://aclanthology.org/2025.semeval-1.44/) (Robertson & Liang, SemEval 2025)
ACL