@inproceedings{hosseinzadeh-etal-2025-xlm,
title = "{XLM}-Muriel at {S}em{E}val-2025 Task 11: Hard Parameter Sharing for Multi-lingual Multi-label Emotion Detection",
author = "Hosseinzadeh, Pouya and
Ebadzadeh, Mohammad Mehdi and
Zeinali, Hossein",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.45/",
pages = "314--318",
ISBN = "979-8-89176-273-2",
abstract = "Throughout this paper we present our system developed to solve SemEval-2025 Task 11: Bridging the Gap in Text-based Emotion Detection Track A. To participate in this contest, we use an architecture based on a pretrained encoder model as the shared part of the model and then add specific head to adapt the shared part for each language. In the first part of this report, we will introduce the task and the specific track in which we participated and then elaborate on the dataset and the system we developed to handle the task. Finally, we will analyze our results and discuss limitations and potential strength point of our solution that could be leveraged in future work to improve results on similar tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hosseinzadeh-etal-2025-xlm">
<titleInfo>
<title>XLM-Muriel at SemEval-2025 Task 11: Hard Parameter Sharing for Multi-lingual Multi-label Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pouya</namePart>
<namePart type="family">Hosseinzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Mehdi</namePart>
<namePart type="family">Ebadzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hossein</namePart>
<namePart type="family">Zeinali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Throughout this paper we present our system developed to solve SemEval-2025 Task 11: Bridging the Gap in Text-based Emotion Detection Track A. To participate in this contest, we use an architecture based on a pretrained encoder model as the shared part of the model and then add specific head to adapt the shared part for each language. In the first part of this report, we will introduce the task and the specific track in which we participated and then elaborate on the dataset and the system we developed to handle the task. Finally, we will analyze our results and discuss limitations and potential strength point of our solution that could be leveraged in future work to improve results on similar tasks.</abstract>
<identifier type="citekey">hosseinzadeh-etal-2025-xlm</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.45/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>314</start>
<end>318</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T XLM-Muriel at SemEval-2025 Task 11: Hard Parameter Sharing for Multi-lingual Multi-label Emotion Detection
%A Hosseinzadeh, Pouya
%A Ebadzadeh, Mohammad Mehdi
%A Zeinali, Hossein
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F hosseinzadeh-etal-2025-xlm
%X Throughout this paper we present our system developed to solve SemEval-2025 Task 11: Bridging the Gap in Text-based Emotion Detection Track A. To participate in this contest, we use an architecture based on a pretrained encoder model as the shared part of the model and then add specific head to adapt the shared part for each language. In the first part of this report, we will introduce the task and the specific track in which we participated and then elaborate on the dataset and the system we developed to handle the task. Finally, we will analyze our results and discuss limitations and potential strength point of our solution that could be leveraged in future work to improve results on similar tasks.
%U https://aclanthology.org/2025.semeval-1.45/
%P 314-318
Markdown (Informal)
[XLM-Muriel at SemEval-2025 Task 11: Hard Parameter Sharing for Multi-lingual Multi-label Emotion Detection](https://aclanthology.org/2025.semeval-1.45/) (Hosseinzadeh et al., SemEval 2025)
ACL