@inproceedings{chen-etal-2025-csiro,
title = "{CSIRO}-{LT} at {S}em{E}val-2025 Task 11: Adapting {LLM}s for Emotion Recognition for Multiple Languages",
author = {Chen, Jiyu and
B{\"o}l{\"u}c{\"u}, Necva and
Karimi, Sarvnaz and
Molla, Diego and
Paris, Cecile},
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.48/",
pages = "336--342",
ISBN = "979-8-89176-273-2",
abstract = "Detecting emotions across different languages is challenging due to the varied and culturally nuanced ways of emotional expressions. The Semeval 2025 Task 11: Bridging the Gap in Text-Based emotion shared task was organised to investigate emotion recognition across different languages. The goal of the task is to implement an emotion recogniser that can identify the basic emotional states that general third-party observers would attribute to an author based on their written text snippet, along with the intensity of those emotions. We report our investigation of various task-adaptation strategies for LLMs in emotion recognition. We show that the most effective method for this task is to fine-tune a pre-trained multilingual LLM for each language."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-csiro">
<titleInfo>
<title>CSIRO-LT at SemEval-2025 Task 11: Adapting LLMs for Emotion Recognition for Multiple Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiyu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Necva</namePart>
<namePart type="family">Bölücü</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarvnaz</namePart>
<namePart type="family">Karimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Molla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecile</namePart>
<namePart type="family">Paris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Detecting emotions across different languages is challenging due to the varied and culturally nuanced ways of emotional expressions. The Semeval 2025 Task 11: Bridging the Gap in Text-Based emotion shared task was organised to investigate emotion recognition across different languages. The goal of the task is to implement an emotion recogniser that can identify the basic emotional states that general third-party observers would attribute to an author based on their written text snippet, along with the intensity of those emotions. We report our investigation of various task-adaptation strategies for LLMs in emotion recognition. We show that the most effective method for this task is to fine-tune a pre-trained multilingual LLM for each language.</abstract>
<identifier type="citekey">chen-etal-2025-csiro</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.48/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>336</start>
<end>342</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CSIRO-LT at SemEval-2025 Task 11: Adapting LLMs for Emotion Recognition for Multiple Languages
%A Chen, Jiyu
%A Bölücü, Necva
%A Karimi, Sarvnaz
%A Molla, Diego
%A Paris, Cecile
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F chen-etal-2025-csiro
%X Detecting emotions across different languages is challenging due to the varied and culturally nuanced ways of emotional expressions. The Semeval 2025 Task 11: Bridging the Gap in Text-Based emotion shared task was organised to investigate emotion recognition across different languages. The goal of the task is to implement an emotion recogniser that can identify the basic emotional states that general third-party observers would attribute to an author based on their written text snippet, along with the intensity of those emotions. We report our investigation of various task-adaptation strategies for LLMs in emotion recognition. We show that the most effective method for this task is to fine-tune a pre-trained multilingual LLM for each language.
%U https://aclanthology.org/2025.semeval-1.48/
%P 336-342
Markdown (Informal)
[CSIRO-LT at SemEval-2025 Task 11: Adapting LLMs for Emotion Recognition for Multiple Languages](https://aclanthology.org/2025.semeval-1.48/) (Chen et al., SemEval 2025)
ACL