@inproceedings{sarymsakova-martin-rodilla-2025-iegps,
title = "{IEGPS}-{CSIC} at {S}em{E}val-2025 Task 11: {BERT}-based approach for Multi-label Emotion Detection in {E}nglish and {R}ussian texts",
author = "Sarymsakova, Albina and
Martin - Rodilla, Patricia",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.74/",
pages = "532--538",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents an original approach for SemEval 2025 Task 11. Our study investigates various strategies to improve Text-Based Multi-label Emotion Detection task. Through experimental endeavors, we explore the benefits of contextualized vector representations by comparing multiple BERT models, including those specifically trained for emotion recognition. Additionally, we examine the impact of hyperparameters adjustments on model performance. For Subtask A, our approach achieved F1 scores of 0.71 on the English dataset and 0.84 on the Russian dataset. Our findings underscore that (1) monolingual BERT models demonstrate superior performance for English, whereas multilingual BERT models perform better for Russian; (2) pretrained emotion detection models proving less effective for this specific task compared to models with reduced vocabulary and embeddings focused on specific languages;(3) exclusive use of BERT-based models, without incorporating additional methods or optimization techniques, demonstrates promising results for multilabel emotion detection."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sarymsakova-martin-rodilla-2025-iegps">
<titleInfo>
<title>IEGPS-CSIC at SemEval-2025 Task 11: BERT-based approach for Multi-label Emotion Detection in English and Russian texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Albina</namePart>
<namePart type="family">Sarymsakova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Martin - Rodilla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents an original approach for SemEval 2025 Task 11. Our study investigates various strategies to improve Text-Based Multi-label Emotion Detection task. Through experimental endeavors, we explore the benefits of contextualized vector representations by comparing multiple BERT models, including those specifically trained for emotion recognition. Additionally, we examine the impact of hyperparameters adjustments on model performance. For Subtask A, our approach achieved F1 scores of 0.71 on the English dataset and 0.84 on the Russian dataset. Our findings underscore that (1) monolingual BERT models demonstrate superior performance for English, whereas multilingual BERT models perform better for Russian; (2) pretrained emotion detection models proving less effective for this specific task compared to models with reduced vocabulary and embeddings focused on specific languages;(3) exclusive use of BERT-based models, without incorporating additional methods or optimization techniques, demonstrates promising results for multilabel emotion detection.</abstract>
<identifier type="citekey">sarymsakova-martin-rodilla-2025-iegps</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.74/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>532</start>
<end>538</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IEGPS-CSIC at SemEval-2025 Task 11: BERT-based approach for Multi-label Emotion Detection in English and Russian texts
%A Sarymsakova, Albina
%A Martin - Rodilla, Patricia
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F sarymsakova-martin-rodilla-2025-iegps
%X This paper presents an original approach for SemEval 2025 Task 11. Our study investigates various strategies to improve Text-Based Multi-label Emotion Detection task. Through experimental endeavors, we explore the benefits of contextualized vector representations by comparing multiple BERT models, including those specifically trained for emotion recognition. Additionally, we examine the impact of hyperparameters adjustments on model performance. For Subtask A, our approach achieved F1 scores of 0.71 on the English dataset and 0.84 on the Russian dataset. Our findings underscore that (1) monolingual BERT models demonstrate superior performance for English, whereas multilingual BERT models perform better for Russian; (2) pretrained emotion detection models proving less effective for this specific task compared to models with reduced vocabulary and embeddings focused on specific languages;(3) exclusive use of BERT-based models, without incorporating additional methods or optimization techniques, demonstrates promising results for multilabel emotion detection.
%U https://aclanthology.org/2025.semeval-1.74/
%P 532-538
Markdown (Informal)
[IEGPS-CSIC at SemEval-2025 Task 11: BERT-based approach for Multi-label Emotion Detection in English and Russian texts](https://aclanthology.org/2025.semeval-1.74/) (Sarymsakova & Martin - Rodilla, SemEval 2025)
ACL