@inproceedings{chivereanu-tufis-2025-racai,
title = "{RACAI} at {S}em{E}val-2025 Task 7: Efficient adaptation of Large Language Models for Multilingual and Crosslingual Fact-Checked Claim Retrieval",
author = "Chivereanu, Radu - Gabriel and
Tufis, Dan",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.77/",
pages = "551--557",
ISBN = "979-8-89176-273-2",
abstract = "The paper details our approach to SemEval 2025 Shared Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval.We investigate how large language models (LLMs) designed for general-purpose retrieval via text-embeddings can be adapted for fact-checked claim retrieval across multiple languages, including scenarios where the query and fact-check are in different languages. The experiments involve fine-tuning with a contrastive objective, resulting in notable gains in both accuracy and efficiency over the baseline retrieval model. We evaluate cost-effective techniques such as LoRA and QLoRA and Prompt Tuning.Additionally, we demonstrate the benefits of Matryoshka embeddings in minimizing the memory footprint of stored embeddings, reducing the system requirements for a fact-checking system."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chivereanu-tufis-2025-racai">
<titleInfo>
<title>RACAI at SemEval-2025 Task 7: Efficient adaptation of Large Language Models for Multilingual and Crosslingual Fact-Checked Claim Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="given">-</namePart>
<namePart type="given">Gabriel</namePart>
<namePart type="family">Chivereanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Tufis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>The paper details our approach to SemEval 2025 Shared Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval.We investigate how large language models (LLMs) designed for general-purpose retrieval via text-embeddings can be adapted for fact-checked claim retrieval across multiple languages, including scenarios where the query and fact-check are in different languages. The experiments involve fine-tuning with a contrastive objective, resulting in notable gains in both accuracy and efficiency over the baseline retrieval model. We evaluate cost-effective techniques such as LoRA and QLoRA and Prompt Tuning.Additionally, we demonstrate the benefits of Matryoshka embeddings in minimizing the memory footprint of stored embeddings, reducing the system requirements for a fact-checking system.</abstract>
<identifier type="citekey">chivereanu-tufis-2025-racai</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.77/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>551</start>
<end>557</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RACAI at SemEval-2025 Task 7: Efficient adaptation of Large Language Models for Multilingual and Crosslingual Fact-Checked Claim Retrieval
%A Chivereanu, Radu -. Gabriel
%A Tufis, Dan
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F chivereanu-tufis-2025-racai
%X The paper details our approach to SemEval 2025 Shared Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval.We investigate how large language models (LLMs) designed for general-purpose retrieval via text-embeddings can be adapted for fact-checked claim retrieval across multiple languages, including scenarios where the query and fact-check are in different languages. The experiments involve fine-tuning with a contrastive objective, resulting in notable gains in both accuracy and efficiency over the baseline retrieval model. We evaluate cost-effective techniques such as LoRA and QLoRA and Prompt Tuning.Additionally, we demonstrate the benefits of Matryoshka embeddings in minimizing the memory footprint of stored embeddings, reducing the system requirements for a fact-checking system.
%U https://aclanthology.org/2025.semeval-1.77/
%P 551-557
Markdown (Informal)
[RACAI at SemEval-2025 Task 7: Efficient adaptation of Large Language Models for Multilingual and Crosslingual Fact-Checked Claim Retrieval](https://aclanthology.org/2025.semeval-1.77/) (Chivereanu & Tufis, SemEval 2025)
ACL