@inproceedings{v-a-z-q-u-e-z-o-s-o-r-i-o-etal-2025-late,
title = "{LATE}-{GIL}-{NLP} at {S}em{E}val-2025 Task 11: Multi-Language Emotion Detection and Intensity Classification Using Transformer Models with Optimized Loss Functions for Imbalanced Data",
author = "V {\'a} z q u e z - O s o r i o, Jes{\'u}s and
G{\'o}mez - Adorno, Helena and
Sierra, Gerardo and
Sierra - Casiano, Vladimir and
Canchola - Hern{\'a}ndez, Diana and
Tovar - Cort{\'e}s, Jos{\'e} and
Sol{\'i}s - Vilchis, Roberto and
Salazar, Gabriel",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.93/",
pages = "666--674",
ISBN = "979-8-89176-273-2",
abstract = "This paper addresses our approach to Task 11 (Track A and B) at the SemEval-2025, which focuses on the challenge of multilingual emotion detection in text, specifically identifying perceived emotions. The task is divided into tracks, we participated in two tracks: Track A, involving multilabel emotion detection, and Track B, which extends this to predicting emotion intensity on an ordinal scale. Addressing the challenges of imbalanced data and linguistic diversity, we propose a robust approach using pre-trained language models, fine-tuned with techniques such as extensive and deep hyperparameter optimization, along with loss function combinations to improve performance on imbalanced datasets and underrepresented languages. Our results demonstrate strong performance on Track A, particularly in low-resource languages such as Tigrinya (ranked 2nd), Igbo (ranked 3rd), and Oromo (ranked 4th). This work offers a scalable framework for emotion detection with applications in cross-cultural communication and human-computer interaction."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="v-a-z-q-u-e-z-o-s-o-r-i-o-etal-2025-late">
<titleInfo>
<title>LATE-GIL-NLP at SemEval-2025 Task 11: Multi-Language Emotion Detection and Intensity Classification Using Transformer Models with Optimized Loss Functions for Imbalanced Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jesús</namePart>
<namePart type="family">V á z q u e z - O s o r i o</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gómez - Adorno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerardo</namePart>
<namePart type="family">Sierra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Sierra - Casiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diana</namePart>
<namePart type="family">Canchola - Hernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="family">Tovar - Cortés</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Solís - Vilchis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Salazar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper addresses our approach to Task 11 (Track A and B) at the SemEval-2025, which focuses on the challenge of multilingual emotion detection in text, specifically identifying perceived emotions. The task is divided into tracks, we participated in two tracks: Track A, involving multilabel emotion detection, and Track B, which extends this to predicting emotion intensity on an ordinal scale. Addressing the challenges of imbalanced data and linguistic diversity, we propose a robust approach using pre-trained language models, fine-tuned with techniques such as extensive and deep hyperparameter optimization, along with loss function combinations to improve performance on imbalanced datasets and underrepresented languages. Our results demonstrate strong performance on Track A, particularly in low-resource languages such as Tigrinya (ranked 2nd), Igbo (ranked 3rd), and Oromo (ranked 4th). This work offers a scalable framework for emotion detection with applications in cross-cultural communication and human-computer interaction.</abstract>
<identifier type="citekey">v-a-z-q-u-e-z-o-s-o-r-i-o-etal-2025-late</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.93/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>666</start>
<end>674</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LATE-GIL-NLP at SemEval-2025 Task 11: Multi-Language Emotion Detection and Intensity Classification Using Transformer Models with Optimized Loss Functions for Imbalanced Data
%A V á z q u e z - O s o r i o, Jesús
%A Gómez - Adorno, Helena
%A Sierra, Gerardo
%A Sierra - Casiano, Vladimir
%A Canchola - Hernández, Diana
%A Tovar - Cortés, José
%A Solís - Vilchis, Roberto
%A Salazar, Gabriel
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F v-a-z-q-u-e-z-o-s-o-r-i-o-etal-2025-late
%X This paper addresses our approach to Task 11 (Track A and B) at the SemEval-2025, which focuses on the challenge of multilingual emotion detection in text, specifically identifying perceived emotions. The task is divided into tracks, we participated in two tracks: Track A, involving multilabel emotion detection, and Track B, which extends this to predicting emotion intensity on an ordinal scale. Addressing the challenges of imbalanced data and linguistic diversity, we propose a robust approach using pre-trained language models, fine-tuned with techniques such as extensive and deep hyperparameter optimization, along with loss function combinations to improve performance on imbalanced datasets and underrepresented languages. Our results demonstrate strong performance on Track A, particularly in low-resource languages such as Tigrinya (ranked 2nd), Igbo (ranked 3rd), and Oromo (ranked 4th). This work offers a scalable framework for emotion detection with applications in cross-cultural communication and human-computer interaction.
%U https://aclanthology.org/2025.semeval-1.93/
%P 666-674
Markdown (Informal)
[LATE-GIL-NLP at SemEval-2025 Task 11: Multi-Language Emotion Detection and Intensity Classification Using Transformer Models with Optimized Loss Functions for Imbalanced Data](https://aclanthology.org/2025.semeval-1.93/) (V á z q u e z - O s o r i o et al., SemEval 2025)
ACL
- Jesús V á z q u e z - O s o r i o, Helena Gómez - Adorno, Gerardo Sierra, Vladimir Sierra - Casiano, Diana Canchola - Hernández, José Tovar - Cortés, Roberto Solís - Vilchis, and Gabriel Salazar. 2025. LATE-GIL-NLP at SemEval-2025 Task 11: Multi-Language Emotion Detection and Intensity Classification Using Transformer Models with Optimized Loss Functions for Imbalanced Data. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 666–674, Vienna, Austria. Association for Computational Linguistics.