@inproceedings{tareh-etal-2025-iasbs,
title = "{IASBS} at {S}em{E}val-2025 Task 11: Ensembling Transformers for Bridging the Gap in Text-Based Emotion Detection",
author = "Tareh, Mehrzad and
Mohammadzadeh, Erfan and
Mohandesi, Aydin and
Ansari, Ebrahim",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.96/",
pages = "695--702",
ISBN = "979-8-89176-273-2",
abstract = "In this paper, we address the challenges of text-based emotion detection, focusing on multi-label classification, emotion intensity prediction, and cross-lingual emotion detection across various languages. We explore the use of advanced machine learning models, particularly transformers, in three tracks: emotion detection, emotion intensity prediction, and cross-lingual emotion detection. Our approach utilizes pre-trained transformer models, such as Gemini, DeBERTa, M-BERT, and M-DistilBERT, combined with techniques like majority voting and average ensemble voting (AEV) to enhance performance. We also incorporate multilingual strategies and prompt engineering to effectively handle the complexities of emotion detection across diverse linguistic and cultural contexts. Our findings demonstrate the success of ensemble methods and multilingual models in improving the accuracy and generalization of emotion detection, particularly for low-resource languages."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tareh-etal-2025-iasbs">
<titleInfo>
<title>IASBS at SemEval-2025 Task 11: Ensembling Transformers for Bridging the Gap in Text-Based Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mehrzad</namePart>
<namePart type="family">Tareh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erfan</namePart>
<namePart type="family">Mohammadzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aydin</namePart>
<namePart type="family">Mohandesi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ebrahim</namePart>
<namePart type="family">Ansari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>In this paper, we address the challenges of text-based emotion detection, focusing on multi-label classification, emotion intensity prediction, and cross-lingual emotion detection across various languages. We explore the use of advanced machine learning models, particularly transformers, in three tracks: emotion detection, emotion intensity prediction, and cross-lingual emotion detection. Our approach utilizes pre-trained transformer models, such as Gemini, DeBERTa, M-BERT, and M-DistilBERT, combined with techniques like majority voting and average ensemble voting (AEV) to enhance performance. We also incorporate multilingual strategies and prompt engineering to effectively handle the complexities of emotion detection across diverse linguistic and cultural contexts. Our findings demonstrate the success of ensemble methods and multilingual models in improving the accuracy and generalization of emotion detection, particularly for low-resource languages.</abstract>
<identifier type="citekey">tareh-etal-2025-iasbs</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.96/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>695</start>
<end>702</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IASBS at SemEval-2025 Task 11: Ensembling Transformers for Bridging the Gap in Text-Based Emotion Detection
%A Tareh, Mehrzad
%A Mohammadzadeh, Erfan
%A Mohandesi, Aydin
%A Ansari, Ebrahim
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F tareh-etal-2025-iasbs
%X In this paper, we address the challenges of text-based emotion detection, focusing on multi-label classification, emotion intensity prediction, and cross-lingual emotion detection across various languages. We explore the use of advanced machine learning models, particularly transformers, in three tracks: emotion detection, emotion intensity prediction, and cross-lingual emotion detection. Our approach utilizes pre-trained transformer models, such as Gemini, DeBERTa, M-BERT, and M-DistilBERT, combined with techniques like majority voting and average ensemble voting (AEV) to enhance performance. We also incorporate multilingual strategies and prompt engineering to effectively handle the complexities of emotion detection across diverse linguistic and cultural contexts. Our findings demonstrate the success of ensemble methods and multilingual models in improving the accuracy and generalization of emotion detection, particularly for low-resource languages.
%U https://aclanthology.org/2025.semeval-1.96/
%P 695-702
Markdown (Informal)
[IASBS at SemEval-2025 Task 11: Ensembling Transformers for Bridging the Gap in Text-Based Emotion Detection](https://aclanthology.org/2025.semeval-1.96/) (Tareh et al., SemEval 2025)
ACL