@inproceedings{park-etal-2025-polite,
title = "Too Polite to be Human: Evaluating {LLM} Empathy in {K}orean Conversations via a {DCT}-Based Framework",
author = "Park, Seoyoon and
Kim, Jaehee and
Kim, Hansaem",
editor = "Hale, James and
Kwon, Brian Deuksin and
Dutt, Ritam",
booktitle = "Proceedings of the Third Workshop on Social Influence in Conversations (SICon 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.sicon-1.6/",
doi = "10.18653/v1/2025.sicon-1.6",
pages = "76--89",
ISBN = "979-8-89176-266-4",
abstract = "As LLMs are increasingly used in global conversational settings, concerns remain about their ability to handle complex sociocultural contexts. This study evaluates LLMs' empathetic understanding in Korean{---}a high-context language{---}using a pragmatics-based Discourse Completion Task (DCT) focused on interpretive judgment rather than generation. We constructed a dataset varying relational hierarchy, intimacy, and emotional valence, and compared responses from proprietary and open-source LLMs to those of Korean speakers. Most LLMs showed over-empathizing tendencies and struggled with ambiguous relational cues. Neither model size nor Korean fine-tuning significantly improved performance. While humans reflected relational nuance and contextual awareness, LLMs relied on surface strategies. These findings underscore LLMs' limits in socio-pragmatic reasoning and introduce a scalable, culturally flexible framework for evaluating socially-aware AI."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2025-polite">
<titleInfo>
<title>Too Polite to be Human: Evaluating LLM Empathy in Korean Conversations via a DCT-Based Framework</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seoyoon</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaehee</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Social Influence in Conversations (SICon 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Hale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="given">Deuksin</namePart>
<namePart type="family">Kwon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritam</namePart>
<namePart type="family">Dutt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-266-4</identifier>
</relatedItem>
<abstract>As LLMs are increasingly used in global conversational settings, concerns remain about their ability to handle complex sociocultural contexts. This study evaluates LLMs’ empathetic understanding in Korean—a high-context language—using a pragmatics-based Discourse Completion Task (DCT) focused on interpretive judgment rather than generation. We constructed a dataset varying relational hierarchy, intimacy, and emotional valence, and compared responses from proprietary and open-source LLMs to those of Korean speakers. Most LLMs showed over-empathizing tendencies and struggled with ambiguous relational cues. Neither model size nor Korean fine-tuning significantly improved performance. While humans reflected relational nuance and contextual awareness, LLMs relied on surface strategies. These findings underscore LLMs’ limits in socio-pragmatic reasoning and introduce a scalable, culturally flexible framework for evaluating socially-aware AI.</abstract>
<identifier type="citekey">park-etal-2025-polite</identifier>
<identifier type="doi">10.18653/v1/2025.sicon-1.6</identifier>
<location>
<url>https://aclanthology.org/2025.sicon-1.6/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>76</start>
<end>89</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Too Polite to be Human: Evaluating LLM Empathy in Korean Conversations via a DCT-Based Framework
%A Park, Seoyoon
%A Kim, Jaehee
%A Kim, Hansaem
%Y Hale, James
%Y Kwon, Brian Deuksin
%Y Dutt, Ritam
%S Proceedings of the Third Workshop on Social Influence in Conversations (SICon 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-266-4
%F park-etal-2025-polite
%X As LLMs are increasingly used in global conversational settings, concerns remain about their ability to handle complex sociocultural contexts. This study evaluates LLMs’ empathetic understanding in Korean—a high-context language—using a pragmatics-based Discourse Completion Task (DCT) focused on interpretive judgment rather than generation. We constructed a dataset varying relational hierarchy, intimacy, and emotional valence, and compared responses from proprietary and open-source LLMs to those of Korean speakers. Most LLMs showed over-empathizing tendencies and struggled with ambiguous relational cues. Neither model size nor Korean fine-tuning significantly improved performance. While humans reflected relational nuance and contextual awareness, LLMs relied on surface strategies. These findings underscore LLMs’ limits in socio-pragmatic reasoning and introduce a scalable, culturally flexible framework for evaluating socially-aware AI.
%R 10.18653/v1/2025.sicon-1.6
%U https://aclanthology.org/2025.sicon-1.6/
%U https://doi.org/10.18653/v1/2025.sicon-1.6
%P 76-89
Markdown (Informal)
[Too Polite to be Human: Evaluating LLM Empathy in Korean Conversations via a DCT-Based Framework](https://aclanthology.org/2025.sicon-1.6/) (Park et al., SICon 2025)
ACL