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Abstract

Counseling and psychotherapy are predomi-
nantly conducted in spoken form, yet compu-
tational models to analyze these conversations
often use only text transcripts as a main data
source. This dependency overlooks important
vocal cues such as tone, pitch, and prosody,
hence restricting the models’ capacity to fully
capture the dynamics of counselor-client inter-
actions. We introduce Motivational Interview-
ing with Speech Cues (MISQ), a simple yet ef-
fective framework for enhancing the analysis of
psychotherapy conversations that uses a large
language model, a lightweight adapter, and
a speech encoder to directly integrate speech
cues. Our experiments show that MISQ con-
sistently outperforms (~5% relative improve-
ment) approaches that omit or use speech indi-
rectly, highlighting the essential role of speech
in accurately capturing counselor and client be-
haviors.

1 Introduction

Vocal cues such as tone, pitch, and prosody are
crucial in counseling conversations, as they convey
emotions and therapeutic intent (Miner et al., 2022;
Wampold, 2012). However, many current computa-
tional psychotherapy systems are based solely on
text transcriptions, often derived from automatic
speech recognition (ASR) models. Consequently,
these models ignore important paralinguistic infor-
mation (Cao et al., 2019; Wu et al., 2022), limiting
their ability to fully capture the complexity of ther-
apeutic interactions.

The process of converting speech to text inher-
ently leads to the loss of important vocal informa-
tion (Cui et al., 2024) since most ASR systems
prioritize linguistic content over non-verbal speech
cues. As shown in Figure 1, even a correctly tran-
scribed utterance (e.g. 0% Word Error Rate (WER))
cannot fully capture the speaker’s tone or emotional
delivery, both of which are essential to understand
the therapy-client interaction.
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...(previous dialogue skipped)...

What other positive things have you
noticed about the exercise?

V-

Therapist
A Transcript: I've noticed | still need to

improve my diet. Working out has helped
a little, but I'd like to make bigger

changes.
|||‘| ||||u|u|||‘||||‘|||||| |||||u|n|| ‘||||’|

SLM Analysis of Audio
Tone: Reflective
Emotion: Honest and open
Pitch: Steady with slight variations,
conveying sincerity

Client

Figure 1: Example of therapist-client interaction in
a counseling session with Speech-Language Model
(SLM) analysis.

Recent work in automated MI analysis has pre-
dominantly relied on text transcriptions from ASR
systems, but growing evidence highlights the value
of multimodal signals, such as acoustic cues and
prosodic features, in capturing nuanced client be-
haviors (Flemotomos et al., 2021; Nakano et al.,
2022; Caponnetto et al., 2019).

In this work, we seek to bridge this gap by explor-
ing how speech features from pre-trained speech
encoders can be leveraged to improve the modeling
of counseling conversations. We focus on behav-
ioral coding and forecasting for counseling conver-
sations conducted using Motivational Interviewing
(MI), a counseling strategy that facilitates behavior
change by resolving ambivalence through reflec-
tive listening and collaborative dialogue (Miller
and Rose, 2009).

We introduce the Multimodal Integrated Model
for Interactions in Counseling (MISQ), to com-
bine a speech encoder with a large language model
(LLM). We show that incorporating speech fea-
tures significantly improves behavioral coding per-
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formance over text-only models, and that directly
integrating raw speech consistently outperforms in-
direct methods, emphasizing its value in modeling
counselor-client interactions.

2 Related Work

Speech Feature Fusion. Tavabi et al (Tavabi
et al., 2020) employed pretrained VGGish embed-
dings to encode prosodic features, while Galland et
al (Galland et al., 2023) leveraged raw speech sig-
nals via self-supervised encoders (e.g., HuBERT)
to preserve paralinguistic information. Hossain et
al (Hossain et al., 2024) uses Audio Spectrogram
Transformer (AST) to extract audio embeddings
(Gong et al., 2021). Notably, these works integrate
speech through feature fusion, such as sequential
or attention-guided fusion.

Dialogue Act Modeling and Behavioral Coding.
Dialogue act modeling originates from the philo-
sophical work of Austin on performative utterances
and Searle’s theory of illocutionary acts, which
provided a framework for classifying speaker in-
tentions into discrete types (Austin, 1962; Searle,
1976). This theoretical foundation enabled the de-
velopment of computational systems capable of
interpreting conversational intent. Behavioral cod-
ing in counseling is a specialized application of
this paradigm, where dialogue acts are defined to
capture specific therapeutic behaviors and client re-
sponses. For instance, well-established coding sys-
tems like the Motivational Interviewing Treatment
Integrity (MITI) and the Motivational Interviewing
Skill Code (MISC) provide structured taxonomies
for these behaviors, enabling the systematic analy-
sis of therapist proficiency and client engagement
(Miller et al., 2003; Moyers et al., 2016).

Paralinguistic Analysis Prior work in paralin-
guistic analysis has explored how vocal features
beyond lexical content contribute to understanding
speaker affect and intent. Early studies examined
prosodic cues such as pitch, energy, and speaking
rate for emotion recognition in spontaneous speech
(Devillers et al., 2003; Schuller et al., 2013). In
clinical psychotherapy, variations in vocal prosody
such as pitch, energy, and speech rate correlate with
both therapeutic alliance and client engagement,
and multimodal models have improved automated
detection of counselor and client behavior (Bayerl
et al., 2022; Flemotomos et al., 2021).

Predicted: Reflection (Classification)

Neutral  (Forecasting)
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Text Transcript: Client: Mm Hmm... ""“
Therapist: Okay. So a patch is
something you've already seen, (Spoken) Okay. So a patch is
and-" something you've already seen,
and-"

Figure 2: MISQ consists of a trainable speech encoder
integrated with a frozen text LLM, enhanced by a small,
trainable LoRA adapter. Additionally, the original text
embedding module is retained to process the text portion
of the input.

3 Motivational Interviewing with Speech
Cues (MISQ)

We build a multimodal language model, MISQ,
by integrating speech information directly into our
model using a speech encoder by processing text
and speech features with the same underlying lan-
guage model. This integration preserves the per-
formance of LLM in text-based tasks (Kang et al.,
2024; Chu et al., 2024) and allows the model to
fully utilize the rich vocal information embedded
in speech, such as tone and prosody, often lost in
text-mediated approaches, such as paralinguistic
captioning.

3.1 Model Overview

As shown in Figure 2, we combine a fine-tuned
speech adapter, which consists of a LoRA adapter
and a speech encoder, with a frozen text-based
language model (LM). The speech encoder projects
downsampled speech representations into the text
embedding space, enabling seamless integration
with the text model without the need to train a
cross-modal language model from scratch, which
would require significantly larger datasets. Our
approach is similar to (Kang et al., 2024) but allows
for a more efficient adaptation by incorporating
parameter-efficient fine-tuning (PEFT).We make
the code for our model public .

Speech Encoder. We extract an acoustic represen-
tation from raw audio using HuBERT (Hsu et al.,

"https://github.com/mindojune/speech_mi
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2021), a pre-trained self-supervised speech encoder.
We use a version fine-tuned on 960 hours of the
LibriSpeech dataset (Panayotov et al., 2015), sam-
pled at 16kHz to effectively capture diverse speech
patterns. More specifically, we use the output from
HuBERT’s last hidden layer as input to the speech
adapter. Since the sequence length of text tokens in
a speech transcript is typically much shorter than
the sequence length of its corresponding discretized
speech, we apply an average pooling layer along
the time dimension to downsample the speech rep-
resentations. To align with the embedding dimen-
sion of the LLM, we further use a projection layer
to upsample the downsampled speech embeddings
(Kang and Roy, 2024).

Text Language Model & Adapter Mod-
ule. For the text model backbone, we use
GeneZC/MiniChat-2-3B (Zhang et al., 2023), a
pre-trained language model with an embedding size
of 3072. Rather than fully fine-tuning the model,
we use PEFT to convert the frozen text-only model
into a multimodal one, following strategies similar
to (Lin et al., 2024). This approach ensures faster
convergence and mitigates the risk of catastrophic
forgetting and overfitting in the pre-trained LLM
(Das et al., 2024). We integrate a LoRA lightweight
adapter (Hu et al., 2022) to effectively inject speech
representations into the model while preserving the
language understanding capabilities of the original
LLM.

Behavioral Modeling with Multimodal Embed-
dings. Our model (shown in Figure 2) starts by
extracting and retaining the text embedding. and
then processes speech through a speech adapter
that extracts frame-level features via a pre-trained
speech encoder. Next, it performs temporal down-
sampling to jointly process the text and speech
embeddings. This process uses a LoRA adapter for
speech-integrated behavior modeling, where the in-
put to the LM is the concatenated sequence of text
and speech features. The LM is trained to either
predict or forecast the target behavior.

4 Experiments

4.1 Data

We use the publicly available AnnoMI dataset (Wu
et al., 2023), which contains counseling conversa-
tions transcribed from 133 MI training demonstra-
tion videos. Since the conversations in the dataset
depict effective and ineffective counseling skills,
we focus on 110 conversations with effective coun-

selors only.

All transcripts are gold-standard human tran-
scripts (no ASR). Table 1 summarizes dataset com-
position and label distribution, and sample utter-
ances are shown in 3.

Category Count Percentage
High-quality dialogues 110 -
High-quality utterances 8839 -
Therapist: Reflection - 28%
Therapist: Question - 28%

Therapist: Informational input - 11%

Therapist: Other - 33%
Client: Change talk - 25%
Client: Neutral talk - 64%
Client: Sustain talk - 11%

Table 1: AnnoMI dataset composition and label distri-
bution (from high-quality sessions) (Wu et al., 2023).

Ten MI practitioners annotated utterances. An-
notation reliability metrics are in Table 2.

(Main) Therapist Behaviour

Input 0.975
Reflection 0.991
Question 0.997
Other 0.996
Client Talk Type
Change 0.916
Neutral 0.986
Sustain 0.890

Table 2: Inter-annotator agreement as intraclass correla-
tion (Wu et al., 2023).

Data Processing. MISQ uses text and speech as
input to model counselor-client interactions. Due
to the considerable length of counseling sessions
(often 10-20 minutes) and the inability of state-
of-the-art models to handle such extended audio
contexts effectively, we limit speech input to the
target utterance only, rather than the full dialogue
history (Wang et al., 2024). Note, however, that the
full dialogue context is still provided to the model
in text form to preserve conversational flow while
leveraging the most relevant speech features to the
target utterance.

4.2 Tasks & Evaluations

Behavioral coding of MI involves labeling conver-
sational utterances with the corresponding behavior
of the therapist and the client during counseling
conversations. Labels function similarly to dia-
logue acts, capturing intent and communication
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strategies (Cao et al., 2019). We perform eval-
uations on two behavioral coding tasks: catego-
rization, which predicts the behavioral code of
the current utterance, and forecasting, which pre-
dicts the behavioral code of the next utterance. In
our experiments, we predict and forecast seven
therapist-client behaviors, including therapist be-
haviors: reflection, question, input, or other; and
client change talk behaviors: neutral (unrelated
to change), sustain talk (resistance to change), or
change talk (motivation for change). Table 3 shows
sample utterances labeled for therapist and client
behavior.

Categorization seeks to recognize speakers’ be-
haviors, while forecasting focuses on anticipating
the next conversational behavior. Together, these
tasks measure the model’s understanding and pre-
diction of counselor-client interactions. We mea-
sure model performance using accuracy and the F1
score to capture both overall correctness and the
balance between precision and recall.

Prompt Excerpt Label Spkr

So, you’ve got this dream... to have
a partner, a house, and a nice car.

Reflection Therapist

Is this dream starting to— I am get- Question Therapist
ting a picture of?

" Yeah,itdbegood. =~~~ Neutral Client

" How offending fits in with that Question Therapist
dream?

“Tguessitdoesnt. =~ Change Client

Table 3: Sample utterances from the AnnoMI Dataset

4.3 Baselines

During our experiments, we consider three main
baselines.

Text Baseline. This model uses transcription only
as input to the model.

Empty Sound. This ablated baseline retains the
trained MISQ model, but receives a zero masked
input for the speech modality. The model is used to
evaluate the relevance of speech features in model
performance.

Paralinguistic Captioning Model. Paralinguis-
tic Captioning has been found to be effective in
improving text models, as shown in DeSTA (Lu
et al., 2024). We use a state-of-the-art paralinguis-
tic captioning model (SLM), to extract paralinguis-
tic features such as tone, pitch, and prosody from
conversations and convert them into textual descrip-
tions (e.g., "client pauses, then speaks with rising
pitch"). These textual descriptions are then con-

catenated with the ASR transcripts and provided as
input to the model.

We omit a full speech-language model base-
line to focus on a lightweight integration for low-
resource counseling settings. Paralinguistic cap-
tioning, which uses a full speech-language model
to generate textual descriptions of vocal cues, cap-
tures key speech features indirectly. Our parameter-
efficient approach yields greater behavioral-coding
improvements while demanding significantly less
computational power and data.

4.4 Training Setup

Our training objective is next-token prediction, op-
timized using standard cross-entropy loss. During
training, we use the AdamW optimizer with be-
tas=(0.9, 0.999). We set the learning rate at le-4,
with batch size of 32. We train for a maximum of
10 epochs, with an early stopping criterion set to
stop training if the validation loss does not improve
for three consecutive epochs.

S Results & Analyses

The results shown in Table 4 reveal that the mod-
els that incorporate speech features outperform the
text-only baseline for categorization and forecast-
ing tasks. MISQ consistently achieves the best
results. This highlights the importance of directly
incorporating vocal cues in modeling counselor-
client interactions.

Categorization. For categorization, MISQ shows
higher general accuracy than both the text baseline
and the paralinguistic description models (71.67%
vs 68.51% and 69.31%). Client and therapist accu-
racies also improved, with notable gains in therapist
performance (77.88%). Macro F1 scores further
confirm the MISQ’s balanced performance across
classes.

In addition, we observe that the performance of
the MISQ with empty sound inputs drops sharply.
This significant decline emphasizes that for MISQ,
speech information is crucial to understanding and
predicting participant behavior, and text alone does
not provide adequate information for behavioral
modeling. However, in Figure 3, we also note
that some confusion remains between MISQ’s pre-
diction of neutral, sustain talk, and change
talk possibly due to inherent ambiguities in client
speech.

Forecasting. In forecasting, MISQ again leads
in performance (52.94% accuracy), surpassing the
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Categorization Forecasting
. . Paralinguistic . Paralinguistic
Metrics Text Baseline Captioning Empty Sound MISQ | Text Baseline Captioning Empty Sound MISQ
Overall Acc. 0.6851 0.6931 0.6878 0.7167 0.5018 0.5071 0.4949 0.5294
Client Acc. 0.6268 0.6315 0.6314 0.6562 0.6042 0.6084 0.6064 0.6405
Therapist Acc. 0.7449 0.7562 0.7440 0.7788 0.4000 0.4063 0.3824 0.4188
Macro F1 0.5930 0.6246 0.4849 0.6473 0.3132 0.3781 0.2936 0.3076

Table 4: Performance comparison between Text Baseline, Paralinguistic Captioning, Empty Sound, and MISQ
models on Categorization and Forecasting tasks. The Empty Sound model is identical to MISQ but receives no
audio input, isolating the impact of the speech modality. Bolded values indicate the best-performing model for each

metric.

Text Baseline and Paralinguistic Captioning mod-
els. Client’s accuracy increased to 64.05%, and
therapist’s accuracy improved modestly. Despite
the inherent difficulty of forecasting, direct speech
integration clearly provides helpful cues to antici-
pate conversational flow.

Confusion Matrix

neutra\ 59 101 0 0 1 1

sustain{ 153 50 35 0 0 1 0

change{ 269 21 247 0 1 1 1

other{ 0 0 0 369 13 40 19

question{ 0 0 0 10 462 32 18

True Labels

reflection] 0 0 0 46 79 59

therapist_input{ 0 0 0 24 42 37 113
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Figure 3: Confusion matrix illustrating model’s predic-
tions against true labels for the categorization task.

Robustness to Noise. We also evaluate our model
in challenging acoustic environments to assess
whether it is capable of handling degraded audio
signals. We simulate noisy acoustic environments
by adding Gaussian noise at varying signal-to-noise
ratio (SNR) levels to the raw speech input. Our ex-
periments show a strong robustness to the noise
injected. As illustrated in Figure 4, MISQ shows
minimal performance degradation in the catego-
rization task at different noise levels. In contrast,
the model experiences a more pronounced perfor-
mance decline for the forecasting task in the pres-
ence of noise. This degradation is most severe at
the highest noise level, whereas at lower levels, the
impact on performance is relatively minor. We hy-
pothesize that paralinguistic features in the speech
signal may be more resistant to noise compared to
purely linguistic and semantic cues.

Categorization Accuracy vs. Noise Level
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Figure 4: Model performance versus noise level for cat-
egorization (top) and forecasting (bottom) tasks. Dots
show mean accuracy, and error bars represent 95% boot-
strap confidence intervals (n=1000).

6 Conclusion

In this work, we presented a simple yet effective
framework that integrates speech features to a pre-
trained text LM in order to improve the modeling
of MI counseling sessions. By combining an LLM
with a lightweight adapter and a speech encoder,
our speech integration approach, MISQ, achieves a
general accuracy improvement of up to 5.5% over
baselines of text alone (text baseline) and condi-
tioned text (paralinguistic captioning), demonstrat-
ing its effectiveness in behavioral coding tasks.
These results underscore the critical role of raw
speech features in capturing the nuanced dynam-
ics of counselor-client interactions. Furthermore,
our study highlights the importance of using direct
speech integration for more accurate and insightful
computational models in psychotherapy.
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