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Abstract

Implicit discourse relation recognition (IDRR)
– the task of identifying the implicit coherence
relation between two text spans – requires deep
semantic understanding. Recent studies have
shown that zero-/few-shot approaches signifi-
cantly lag behind supervised models However,
LLMs may be useful for synthetic data augmen-
tation, where LLMs generate a second argu-
ment following a specified coherence relation.
We applied this approach in a cross-domain set-
ting, generating discourse continuations using
unlabelled target-domain data to adapt a base
model which was trained on source-domain la-
belled data. Evaluations conducted on a large-
scale test set revealed that different variations
of the approach did not result in any significant
improvements. We conclude that LLMs often
fail to generate useful samples for IDRR, and
emphasize the importance of considering both
statistical significance and comparability when
evaluating IDRR models.

1 Introduction

IDRR is the task of identifying the covert discourse
relation (DRs) between two given text spans (the
arguments: Arg1 and Arg2) in the absence of a spe-
cific discourse connective (DC) such as because
or moreover. Explicit labelling of discourse struc-
ture is beneficial to inform LLMs in summarization
tasks (Li et al., 2016; Ishigaki et al., 2019; Xiao
et al., 2020; Dong et al., 2021; Liu et al., 2023; Liu
and Demberg, 2024). However, IDRR is challeng-
ing both for humans (Hoek et al., 2021) and models
(SOTA, 56.50% F1 and 64.87% accuracy in Zeng
et al., 2024), particularly in a cross-domain setting
(Shi and Demberg, 2019; Atwell et al., 2022; Liu
and Zeldes, 2023; Pyatkin et al., 2023).

Prompting of large pre-trained language models
(LLMs), despite the human- or even superhuman-
level performance in various reasoning tasks (e.g.,
Mao et al., 2023; Bang et al., 2023; Gilardi et al.,

2023; Törnberg, 2023), was found to be not suc-
cessful in IDRR. Few-shot prompting using GPT-4
only reaches 30.90% F1 and 29.40% accuracy on
the Penn Discourse Treebank (PDTB 3.0, Prasad
et al., 2019), and 28.87% F1 and 32.67% accuracy
on the multi-domain DiscoGeM corpus (Scholman
et al., 2022), even with task-specific prompt en-
gineering (Chan et al., 2024; Yung et al., 2024;
Omura et al., 2024). On the other hand, a pre-
vious study demonstrated that LLMs can instead
be used to generate synthetic data to augment the
PDTB 3.0, improving the performance of classes
that the baseline struggles to predict (Omura et al.,
2024).

This work explores the application of synthetic
data augmentation for cross-domain IDRR. Using
raw texts from different target domains, we prompt
LLMs to generate discourse continuations that ex-
press specific DRs. The generated data is then
used to adapt the base model trained on human-
annotated data of the source domain, which is the
PDTB 3.0. We experimented with outputs of differ-
ent LLMs, prompt templates, screening strategies
and various advanced methods of domain adapta-
tion, and evaluated on the entire DiscoGeM corpus,
which is 4 times the size of the test set used in pre-
vious work (Omura et al., 2024). We only found
marginal differences between models adapted to
target-domain synthetic data compared with the
base model. The benefit of generating synthetic
data is unclear compared with direct application of
the cross-domain base model, or using it to pseudo-
label target-domain data. We have derived the fol-
lowing insights from the experimental results:

1. Synthetic data augmentation by LLMs does
not improve IDRR under a cross-domain set-
ting, where annotated target-domain data is
unavailable for training nor validation. The
synthetic data quality relies on the screening
by a base model trained on large-scale source-
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domain annotated data.

2. Previous positive results in in-domain IDRR
may have been overly optimistic, as improve-
ments were observed only under specific con-
figurations, and exhibited high variability.

3. Fine-grained discourse inference remains a
significant challenge for LLMs, compared
with NLU tasks such as binary sentiment or
topic classification (Ubani et al., 2023; Pied-
boeuf and Langlais, 2025).

4. Manual analysis shows that the valid gener-
ated samples are often highly prototypical ex-
amples of the DR class. In contrast, DRs in
real texts tend to be more ambiguous and rely
on indirect inference.

2 Related Work

2.1 Synthetic data generated by LLMs
Supervised learning algorithms rely on labeled data
as training objectives but manual annotation is time-
and cost-intensive. Using controlled text genera-
tion (Hu et al., 2017) with LLMs through instruc-
tional prompts, large-scale training data was cre-
ated for a range of NLP tasks, such as question-
answering (Puri et al., 2020), textual similarity
identification (Schick and Schütze, 2021), NLU
(Meng et al., 2022; Liu et al., 2022), commonsense
reasoning (Yang et al., 2020), and dialogue classifi-
cation (Sharma and Feldman, 2023), etc.

Recent findings indicate that while some tasks
benefit from synthetic augmentation, others do not.
(Ubani et al., 2023; Møller et al., 2024; Piedboeuf
and Langlais, 2025). For example, Ubani et al.
(2023) shows that synthetic data augmentation has
been shown to significantly improve performance
in movie review classification (positive vs. nega-
tive) and question type identification (e.g., whether
a question seeks a "reason" or a "number"). How-
ever, in ambiguous tasks like irony detection, mod-
els trained with synthetic data often underperform
the baseline (Piedboeuf and Langlais, 2025).

2.2 Implicit DR recognition
The current SOTA of IDRR models are mostly
based on fine-tuning or prompt-tuning of the
RoBERTa model (Xiang et al., 2022; Zhou et al.,
2022; Zhao et al., 2023; Jiang et al., 2023b; Zeng
et al., 2024). Cross-domain IDRR remains chal-
lenging and understudied. We started our exper-
iments with GOLF (Jiang et al., 2023b), one of

the SOTA models trained on PDTB, but found no
significant improvement over a standard RoBERTa
model. Several previous studies have found that
models do not generalize well to out-of-domain
data (Shi and Demberg, 2019; Atwell et al., 2021;
Liu et al., 2021; Scholman et al., 2021; Kurfalı
and Östling, 2021; Liu and Zeldes, 2023; Braud
et al., 2023; Li et al., 2024). Furthermore, attempts
to classify implicit DR by zero/few-shot prompt-
ing were not fruitful – both a standard multiple-
choice template (Chan et al., 2024) and multi-step
templates with verification questions (Yung et al.,
2024) result in performance significantly below
that of supervised models.

Despite the low performance in IDRR, LLMs
have been found to be capable of generating DR
arguments based on a given DR label or DC (Ko
and Li, 2020; Stevens-Guille et al., 2022). Ko and
Li (2020) reported that in 83% of the cases, the
DR continuation generated by gpt2, prompted by
a given Arg1 and a DC, were agreed by at least 3
out of 5 human annotators. However, the LLM has
to be informed of the intended DR to be generated
in order to lexicalize it correctly (Stevens-Guille
et al., 2022), and in some cases, even the annotated
labels in discourse resources are not fine-grained
enough (Yung et al., 2021).

Omura et al. (2024) introduced an approach to
augment the PDTB with synthetic data. Specifi-
cally, given an Arg1 from the original PDTB train-
ing set and a DR label, an LLM is prompted to
generate an alternative Arg2. The generated sam-
ples undergo a secondary filtering stage via few-
shot prompting to discard ambiguous cases. Dur-
ing model training, a weighted loss is applied to
balance the original and synthetic samples. The
augmentation strategy targets the most confusing
DR classes, i.e. those with the lowest recall on
the PDTB validation set. Performance gains were
observed when augmenting the top-3 most confus-
ing classes, but not top-1 nor top-5, depending on
the model size, raising some concerns about the
robustness of these findings.

Compared to a standard RoBERTabase model
(Liu et al., 2019), the reported improvements were
modest: accuracy increased from 64.2 to 64.8, and
macro-F1 improved from 57.1 to 59.5. However,
results varied across the 3 runs, with fluctuations
ranging from ±0.4 to ±1.6 points.
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3 Experiment

3.1 Data
We set out to use synthetic discourse samples to
adapt an IDRR model trained on source-domain
data, which is the PDTB 3.0 (Prasad et al., 2019), to
predict implicit DRs in the target domains, which
are the sub-corpora in DiscoGeM 1.5 (Scholman
et al., 2022; Yung and Demberg, 2025). The target
domains include Europarl (EP), Wikipedia (WK)
and novel (NV). We experiment based on a real-
life scenario, where labelled target domain data is
unavailable, i.e. the DiscoGeM data is used only
for testing. However, it is assumed that the target
domain is known during testing. The label distribu-
tion of the data we used and more details about the
data can be found in Section A in the Appendix.

For the generation of the synthetic data, we col-
lected raw texts from similar sources as the target
domains: EP texts from the Europarl Direct Corpus
(Koehn, 2005; Cartoni and Meyer, 2012); WK texts
from the Wikipedia1 and NV texts from the Opus
Book Corpus (Tiedemann, 2012), omitting EP pro-
ceedings, WK articles and novels that are included
in DG. While DG’s data contains various transla-
tion directions, we only used original English texts
as in the PDTB. 4000 sentences from each domain
are randomly sampled for synthetic data generation,
which is described in the next subsection.

3.2 Methodology
Table 1 summarizes the different methodologi-
cal variants we explored. To harness the LLM’s
strength of left-to-right generation, we prompt the
LLM to produce the continuation of a discourse
prefix as in Omura et al. (2024). Given a sentence
(the Arg1) from the raw text of the target domain
and a DR label, an LLM is prompted to generate
the following sentence (the Arg2). One in-context
example selected from DiscoGeM is provided. We
experimented with two different prompt templates.

The synthetic data was generated using three
open-source LLMs, including: Mistral-7B-Instruct-
v 0.2 (Jiang et al., 2023a), Llama3.1 8B-
Instruct (Dubey et al., 2024), and gemma2 9B
(Team Gemma et al., 2024). We also considered
Deepseek-V3 7B (DeepSeek-AI, 2024) but initial
inspection of the synthetic data revealed that the
generations were particularly noisy (e.g. the gener-
ated Arg2s were often exact repetition paraphrase

1"featured articles" on the Wikipedia website as of
01.03.2020

of the given Arg1s). We thus did not include this
model in the current experiment.

The generated DRs then undergo a selection pro-
cess to remove noisy instances. In particular, the
DC-prompt actually prompts the generation of ex-
plicit relations. The relation between the two ar-
guments could shift when the explicit DC is re-
moved (Sporleder and Lascarides, 2008; Liu et al.,
2024). Since the zero-shot performance of LLMs
significantly lags behind supervised models (Yung
et al., 2024), we trained a RoBERTabase model (Liu,
2019) on the PDTB 3.0 to predict the DR of the
synthetic samples and compare the prediction with
the intended label. We compared three screening
strategies, balancing sample quality and diversity.

The screened synthetic DR instances (statis-
tics in Table 6 in the Appendix) are then used as
domain-specific data to adapt the source-domain
model. Similarly, we evaluated several methods
and configurations, such as prefix tuning (Li and
Liang, 2021) vs. simple data concatenation. We
compare the proposed models with the baseline
model trained on PDTB (i.e. the model for filter-
ing), the SOTA GOLF model (Jiang et al., 2023b)
trained on PDTB, and pseudo-labeling (Yarowsky,
1995). The pseudo-labelled data (DGpseudo) are
produced by using the baseline model to label adja-
cent sentence pairs in target-domain raw data. Sen-
tence pairs in which an explicit DC was found at
the beginning of the second sentence are excluded.
This follows the preprocessing steps outlined in
DiscoGeM: DCs within the first 5 tokens of the
generated sentence are identified by string match-
ing against a closed list (Scholman et al., 2022) and
then excluded.

For each of the 14 Level-2 (see Section A) DR la-
bels in PDTB 3.0, we generated one synthetic con-
tinuation using each LLM, based on the same set
of 4, 000 randomly sampled raw sentences in each
target domain. We also generate synthetic sam-
ples to the class SIMILARITY, which is exclusive
to the target domain.2 A total of 12, 000 pseudo-
labelled instances per domain were used for com-
parison, roughly matching the size of the screened
synthetic data (see Table 6). The combined data
in the domain-mixed configuration was also down-
sampled to approximately 10, 000 instances, while
preserving the per-domain and per-class distribu-

2Since the baseline PDTB model does not classify the SIM-
ILARITY, these synthetic samples never get through the strict
screen but can possibly pass the confusion and combination
screens.
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LLMs Mistral-7B-Instruct, Llama3.1 8B-Instruct, gemma2-9B
prompt template (more details in Appendix B)
DC-prompt lexicalize the DR to be generated by a connective (DC), e.g. because for the CAUSAL relation
DR-prompt directly prompt by the DR label, providing the definition on the annotation manual
screening method (more details in Appendix C)
strict screen only include samples where the intended DR matches the prediction by the base model
confusion screen exclude samples where the predicted label is a frequent misprediction of the intended label
combi screen combination: apply the confusion screen if the intended DR is rare (implicit DR types with <= 5%

distribution in PDTB 3.0), otherwise the strict screen
adaptation model
PDTB + DGsyn a RoBERTabase model trained on a direct combination of the PDTB and synthetic data
PDTB → DGsyn the PDTB-trained RoBERTabase model adapted to the synthetic data by prefix-tuning
PDTB →IV DGsyn include an invariance loss (Zhou et al., 2020; Tzeng et al., 2014) alongside the standard cross-entropy

loss to encourage the model to learn features that are indistinguishable between real and synthetic data
final loss: LCE − λLIV, where λ is set to 0.1 based on a search from {0.1, 0.3, 0.5}

target-domain data configuration
domain-specific one model specifically adapted to the synthetic data of each domain
domain-mixed a single model trained on the combined synthetic data of all domains, with a domain token

prepended to the beginning of each sample (Yung et al., 2022)

Table 1: Variants of the synthetic DR augmentation approach explored in the experiment.

tions to ensure comparability.
All domain adaptation models are trained for

3 epochs with a learning rate of 1e-4, primarily
chosen to prevent overfitting (Yang et al., 2024), as
our validation set consists of silver data rather than
the target data. We set the embedding dimension
of the prefix-tuning parameters to 512 leading to
≈ 7M trainable parameters compared to ≈ 130M
parameters required for full fine-tuning.

3.3 Results

Table 2 presents the major comparison of the model
variants. We focused on models using generations
from Mistral, as it had the highest screening pass
rate, indicating superior generation quality. All re-
sults are averaged values based on 3 random seeds.
For evaluation, we computed accuracy and class-
wise F1 in line with previous works (e.g. Xue et al.,
2015), where macro-F1 scores are averaged across
all classes occurring in the test set. For items with
multiple gold labels, predictions matching any of
the gold labels are considered correct, and the un-
matched alternative labels are excluded from the
classwise F1 calculation. We assessed the statis-
tical significance of the difference between each
model and the baseline using t-tests conducted over
the results from the 3 experimental runs.

It can be seen in Table 2 that none of the model
variants consistently outperform the baseline across
domains and evaluation metrics. Considering the
variation across runs, most results do not show
statistically significant differences from the base-
line. This suggests that numerical differences, up to
2.7% points, are primarily due to network random-

ness rather than genuine improvements. The SOTA
GOLF model also does not outperform the baseline
on DiscoGeM, highlighting the challenge of cross-
domain IDRR. No clear advantage is observed over
the more straightforward pseudo-labeling method.
The only consistent and significant observation is
the under-performance of the confusion and combi
screens. This proves that the synthetic samples
are not helpful without strict guidance by a super-
vised model, trained on a large number of human-
annotated data,

4 Discussion and conclusion

Contrary to the improvements reported in previ-
ous studies, our results did not confirm the bene-
fits of synthetic data augmentation for IDRR in a
cross-domain setting. This is in line with recent
reports that synthetic samples generated by LLMs
do not improve abstract and ambiguous tasks, such
as irony detection (Piedboeuf and Langlais, 2025).

We also found high variance in the model per-
formance. In particular, the F1 scores of the rare
classes are unlikely to be significant due to the
skewed data distribution. The evaluation methods
for instances with multiple gold labels also vary
across studies, leading to inconsistencies. For ex-
ample, while some works, including the current
study, discard unmatched alternative gold labels;
other works, such as Omura et al. (2024), count
them as true positives in the F1 calculation.

Since PDTB was annotated by experts and
DG via crowdsourcing, discrepancies in annotation
methods may have an impact on the results. Py-
atkin et al. (2023) report a moderate 56.9% agree-
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Model LLM tpl. screen tgt. domain data EP WK NV
config. size3 F1 Acc F1 Acc F1 Acc

Baseline PDTB - - - - 0 21.03 42.00 22.81 45.58 21.94 43.98
GOLF PDTB - - - - 0 21.30 42.05 23.98 46.29 21.20 42.93
PDTB → DGsyn llama3 DC strict specific 8680 21.69 41.74 22.33 47.32 22.89 44.19

gemma2 DC strict specific 8315 21.94 41.88 23.99 46.67 23.12 44.98
mistral DC strict specific 10546 21.47 40.54 24.42 47.05 22.68 44.88
mistral DC confuse specific 43214 11.90∗ 21.73∗ 16.94∗ 35.07∗ 15.47∗ 31.54∗

mistral DC combi specific 18286 16.72∗ 32.47∗ 19.41∗ 41.90∗ 18.73∗ 39.05∗

mistral DR strict specific 12376 21.62 42.16 24.87 47.59∗ 22.86 46.67
mistral DR strict mixed 10441 21.58 41.77 24.03 47.21 23.19 45.54
mistral DC strict mixed 10441 22.40∗ 42.05 23.73 46.78 22.50 44.19

PDTB + DGsyn mistral DC strict specific 12356 21.32 39.72∗ 23.82 46.94 22.80 44.86
PDTB →IV DGsynmistral DC strict specific 12376 21.57 40.32 24.12 47.53 22.41 44.60

mistral DC strict mixed 10441 22.03∗ 41.46 22.38 47.05 22.50 43.74
PDTB + DGpseudo - - - specific 12000 20.81 41.28 23.63 46.29 23.07∗ 44.12
PDTB → DGpseudo - - - specific 12000 20.71 42.37 23.42 47.64∗ 22.30 44.29

- - - mixed 10000 21.78∗ 42.01 23.90 46.83 21.80 43.00
PDTB →IV DGpse - - - specific 12000 21.01 41.88 24.37 47.21 21.66 43.39

Table 2: Performance of model variants evaluated on the sub-corpora of DiscoGeM. The best scores are bolded.
Significant differences from the baseline model, based on variations across runs, are marked with ∗. The synthetic
data sizes of the domain-specific models are averaged across the models of the three domains.

ment between the original and DG-style crowd-
sourced labels of 300 PDTB items. A similar rate
(57.7%) was found between expert annotations of
implicit DRs (Zikánová et al., 2019), suggesting
that crowdworkers align with expert judgments to
a comparable degree.

In fact, interpretation of implicit DRs involves
deep cognitive pro- cessing that is universally diffi-
cult for humans (Oza et al., 2009; Zhou and Xue,
2012; Poláková et al., 2013; Hoek et al., 2021).
The major reason is that multiple interpretations
are often possible based on the perspectives of the
readers (Rohde et al., 2016; Scholman et al., 2022).

We manually annotated a random subset of 100
synthetic samples and found a 65% agreement with
the intended DRs in the prompts. 28 of the 35
disagreement were valid alternative interpretations.
This shows that the generated DRs are valid but
less ambiguous than natural ones, which often lack
clear cues and allow multiple plausible readings.
Figure 1 provides several examples: while alter-
native discourse relations can be inferred from the
genuine DR samples, the synthetic examples tend
to be clearer and more straightforward.

The limited effectiveness of synthetic data for
IDRR may therefore be explained by the perspec-
tivist nature of DR inference. Since prompting
LLMs to generate specific relations tends to bias
outputs of prototypical cases, a potential improve-
ment could involve prompting examples that re-
flect multiple plausible senses, combined with co-
occurrence-aware, multi-label screening. Future

1a) Genuine REASON/CONJUNCTION

Arg1: It is an honour and a pleasure to have the opportunity
to present this report to Parliament today.
Arg2: It is on the very important subject of product lia-
bility on which the European Community first introduced
legislation as long ago as 1985 in the form of a directive...

1b) Synthetic REASON

Arg1: Personally he had nothing to fear, for the convicts
could not reach him in Granite House.
Arg2: He was securely locked within Granite House.

2a) Genuine ARG2-AS-INSTANT/ARG2-AS-DETAIL

Arg1: The history of agriculture began thousands of years
ago.
Arg2: After gathering wild grains beginning at least 105,000
years ago, nascent farmers began to plant them around
11,500 years ago.

2b) Synthetic ARG2-AS-INSTANT

Arg1: Holmes mourned that the pony pennings of his day
were only "a shadow of their former glory".
Arg2: Breeds such as Shire horses or Friesians, once promi-
nent in England and the Netherlands respectively, could
serve as examples.

Figure 1: Genuine DR examples from DiscoGeM 1.5
and screened synthetic samples generated by Mistral.

work could also explore additional factors, such as
the effect of synthetic sample size and the impact
of contrastive generation, such as pairing different
Arg1s in each sample v.s. using a single Arg1 with
multiple continuations representing different DR
senses.
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5 Limitation

A primary limitation of the current work is the lack
of experimentation with the latest, more powerful
and larger LLMs, such as GPT-4o and Claude-3
Opus, due to constraints in budget, time, and com-
putational resources. These more advanced mod-
els may be capable of generating higher-quality
discourse samples for augmentation, potentially
leading to improved performance.

In addition, we did not extensively refine the
prompt templates in order to generate discourses
that are closer to natural examples. As discussed in
Section 4, the generated samples were less ambigu-
ous than naturally occurring discourses. A possi-
ble improvement could involve explicitly instruct-
ing LLMs to generate ambiguous examples or in-
stances with multiple DR interpretations. However,
intensive prompt engineering is necessary to gener-
ate high-quality ambiguous DR samples. Pseudo-
labeling remains a more promising approach for
capturing DR ambiguity, as it leverages real texts
rather than synthetic ones.
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A Data

PDTB 3.0 DG 1.5 (test)
train dev EP WK NV ttl.

Expansion
CONJUNC. 3584 298 314 177 323 814
LEV.-OF-DET. 2493 262 532 161 460 1153
INSTANT. 1117 116 212 37 94 343
MANNER 191 14 20 0 6 26
SUBSTITUT. 278 27 41 4 47 92
EQUIVAL. 252 25 50 2 38 90
DISJUNCT. 0 0 0 0 5 5
EXCEPTION 0 0 0 1 6 10
Contingency
CAUSE 4469 450 885 86 857 1828
PURPOSE 1102 97 139 10 49 198
CAUSE+BEL. 157 13 0 0 0 0
CONDITION 152 18 85 3 19 107
Contrast
CONCESSION 1164 103 229 23 186 438
CONTRAST 639 82 38 19 58 115
SIMILARITY 0 0 65 6 42 113
Temporal
ASYNCHR. 985 102 18 70 536 624
SYNCHR. 433 34 73 16 158 247
Total 17016 1641 2704 615 2884 6203

Table 3: Distribution of the Level-2 classes, grouped
under 4 Level-1 categories, in each data subset. Disco-
GeM’s distribution is based on the single majority label
per sample

We use PDTB 3.0 (Prasad et al., 2019) as the
source-domain data for training and tuning and
DiscoGeM 1.5 (Scholman et al., 2022; Yung and
Demberg, 2025) as the target-domain data for evalu-
ation. Table 3 shows the distribution of all labelled
data used in this study. PDTB 3.0 is the largest
discourse resource in English annotated by trained
annotators. The texts come from the news articles
of the Wall Street Journal in the 90s. Implicit rela-
tions are annotated between consecutive sentences
as well as within individual sentences, if identified.
The relation labels are arranged in a 3-level hierar-
chy. We train our source-domain model to predict
the 14 Level-2 labels with more than 10 instances
in the test set, as in previous works (e.g. Kim et al.,
2020). Sections 2 − 20 and 1 − 2 are used as for
training and tuning respectively (Ji et al., 2015).

DiscoGeM 1.5 is a crowdsourced corpus of im-
plicit discourse relations in English containing texts
from multiple genres: European Parliament pro-

ceedings (EP), Wikipedia articles (WK), and lit-
erature (NV). Each relation is annotated by 10
crowdworkers using a connective insertion task.
The label set is also based on the PDTB 3.0 la-
bel hierarchy, but only inter-sentential relations are
annotated. We use the complete DG corpus for
evaluation, except the instances that are labelled
NO RELATION, which is not considered as a type
of implicit DRs in PDTB 3.0.

In the training and tuning of all the models, we
use a single label per instance (Conn1SenseClass1
label of PDTB). The predicted labels are evalu-
ated against multiple labels, which are defined as
annotations with 40% or more votes.

B Prompt template

The exact DC-prompt and the DR-prompt tem-
plates are shown in Figure 2. Table 4 lists the
connectives used in the DC-prompt for each DR
label.

###Instructions###
Complete the sentence, and don’t generate more than one
sentence.

###Example###
Q: The Artist has his routine. He spends his days sketching
passers-by, or trying to. Later, ...
A: at night he returns to the condemned building he calls
home.

###Your task###
Q: The brokerage firms learned a lesson the last time around.
Therefore, ...
A:

###Instructions###
Given two arguments, the relation "Conjunction" is defined
as "both arguments, which don’t directly relate to each other,
bear the same relation to some other situation evoked in the
discourse".
Here are examples that have the relation "Conjunction":
She, out of gratitude, had her arms wrapped around his neck
as they slept. CONJUNCTION
Various articles of their clothing lay intermingled around
the bed.

###Your task###
Please write down the second arguments that have the rela-
tion CONJUNCTION to the first argument: "And over the
desert plain one heard only the moan of squalls through the
broken trellises of the enclosures." Here list several second
arguments:

Figure 2: Top: DC-prompt; bottom: DR-Prompt

C Screening methods

The confusion screen filters out samples where the
base model’s predicted label does not match the in-
tended label but instead corresponds to a frequent
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intended DR L′ DC in DC-prompt
CONJUNCTION In addition, | Furthermore,
LEVEL-OF-DETAIL More specifically, | In particular,
INSTANTIATION For example, | For instance,
MANNER by | by means of
SUBSTITUTION Instead, | Rather than that,
EQUIVALENCE In other words, | That is to say,
CAUSE It is/was because | Therefore,
PURPOSE in order | so as
CAUSE+BELIEF As an evidence, | This justifies that
CONDITION if | if it is/was
CONCESSION Nonetheless, | Nevertheless,
CONTRAST On the other hand, | In contrast,
SIMILARITY Similarly,
ASYNCHRONOUS Later, |Subsequently,
SYNCHRONOUS Simultaneously, | Meanwhile,

Table 4: The discourse connectives used in the DC-
prompt for different DR types.

misclassification of the ground truth. For exam-
ple, if the baseline model frequently misclassifies
CAUSE+BELIEF as CAUSE, synthetic samples la-
beled as CAUSE+BELIEF but predicted as CAUSE

are excluded by the confusion screen. Table 5 pro-
vides a complete mapping of the most common
mispredictions, derived from the confusion ma-
trix of the RoBERTa-base model evaluated on the
PDTB 3.0 dev set. This screening method follows
the strategy proposed in previous work (Omura
et al., 2024), but replaces zero-shot prompting-
based predictions with those obtained through su-
pervised classification. Table 6 summarizes the

intended label L′ confuse(L′)

CONJUNTION,LEVEL-OF-DETAIL CAUSE
SUBSTITUTION, EQUIVALENCE
CAUSE+BELIEF, CONDITION
CONCESSION, ASYNCHRONOUS
INSTANTIATION, MANNER, CAUSE LEVEL-OF-DETAIL
SYNCHRONOUS, SIMILARITY CONJUNCTION
PURPOSE CONDITION
CONTRAST CONCESSION

Table 5: Intended label L′ vs confuse(L′) used in the
confuse screen. The generation is selected if Lpred ̸=
confuse(L′).

screened label distributions per different settings.
The screened data size of the mistral generation
is 10%− 20% larger, indicating higher agreement
with the supervised model. On the other hand, the
high selection rate of the confusion screen used
in the previous work suggests a significantly more
lenient selection process.

LLM llama3 gemma2 mistral
prompt DC
screen strict
EP 9361 8464 10724
WK 9101 9068 10689
NV 7579 7415 10224
LLM mistral
prompt DC DC DR
screen confuse smooth strict
EP 39846 17337 11473
WK 44833 19434 12457
NV 44962 18087 13198

Table 6: Size of the synthetic data generated by differ-
ent LLMs, prompts, and screens. There were 60000
instances (4000 Arg1raws × 15 DR types) generated in
each case before screening.
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