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Abstract

This study investigates differences in linguis-
tic accommodation—changes in language use
and style that individuals make to align with
their dialogue partners—in human and LLM
communication. Specifically, it contrasts se-
mantic and stylistic alignment within question-
answer pairs in terms of whether the answer
was given by a human or an LLM. Utiliz-
ing embedding-based measures of linguistic
similarity, we find that LLM-generated an-
swers demonstrate higher semantic similar-
ity—reflecting close conceptual alignment with
the input questions—but relatively lower stylis-
tic similarity. Human-written answers exhibit a
reverse pattern, with lower semantic but higher
stylistic similarity to the respective questions.
These findings point to contrasting linguistic ac-
commodation strategies evident in human and
LLM communication, with implications for fur-
thering personalization, social attunement, and
engagement in human-AI dialogue.

1 Introduction

Human dialogue comes with a range of social
and psychological adaptations (Chartrand and van
Baaren, 2009; Giles et al., 1991; Niederhoffer and
Pennebaker, 2002; Pickering and Garrod, 2004),
that are central to mutual understanding and social
attunement between two dialogue partners (Char-
trand and Bargh, 1999; Garrod and Pickering, 2004;
Giles and Ogay, 2007). Much as dialogue with
Large Language Models (LLMs) has come to of-
fer a close approximation to that with humans, it
remains unclear whether or not such adaptive be-
haviors might already have been learned by LLMs
owing to their training on massive amounts of
human-produced texts. As LLMs are increasingly
being deployed in what are essentially social set-
tings, such as teaching and mental health counsel-
ing, understanding of these socially adaptive be-
haviors has assumed greater relevance (Belosevic

and Buschmeier, 2024). Linguistic accommoda-
tion is one such behavior (Giles and Ogay, 2007).
It refers to adjustments in language use and style
that individuals make to align with their dialogue
partners. It has been shown to be a distinctive fea-
ture of human dialogue and plays an important role
in effective interaction, facilitating social approval
and mutual understanding (Giles et al., 1991).

A range of recent studies have compared linguis-
tic differences between human and LLM generated
text. Zhou et al. (2023) compared AI-created and
human-created misinformation and found that AI-
generated misinformation exhibited enhanced emo-
tional content and used more salient expressions.
Herbold et al. (2023) compared human-written ver-
sus ChatGPT-generated argumentative student es-
says and found that expert teachers rated the ones
by ChatGPT higher. They also found that while
humans used more modals and epistemic markers,
ChatGPT wrote more complex sentences and used
more nominalizations. Muñoz-Ortiz et al. (2024)
compared human-written English news text with
that generated by LLMs, and found that human
texts exhibit more scattered sentence length dis-
tributions, a distinct use of dependency and con-
stituent types, and more aggressive emotions (fear,
disgust), while LLM outputs showed more mark-
ers of objective language. Cai et al. (2024) con-
ducted a range of psycholinguistic tests and found
that, compared to LLMs, humans, preferred using
shorter words to convey less informative content,
and showed higher use of context to resolve syntac-
tic ambiguities.

While the aforementioned studies compared lin-
guistic properties of human and LLM generated
text corpora, in this study, we compare linguistic
properties within specific question-answer pairs,
where the answers were given either by a human or
an LLM. Toward this purpose, we extend a dataset
of human-human and human-LLM QA pairs (Guo
et al., 2023), to a range of new LLMs. Subse-
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quently, using embedding-based measures, we cal-
culate semantic (Solatorio, 2024) and stylistic (Pa-
tel et al., 2025) similarities between each QA pair.
This allows us to examine whether humans and
LLMs make adjustments to the language style and
usage in their responses, in order to better align
with the style and usage evident in the questions
from their dialogue partners.

2 Methods

The developed analytical framework proposes to
study linguistic alignment within human-human
and human-LLM QA pairs through their vector
representations within high dimensional textual em-
bedding spaces.

2.1 Corpus
We start by extending a dataset of human-human
and human-LLM QA pairs from Guo et al. (2023),
to a range of new LLMs. The Human ChatGPT
Comparison Corpus (HC3) (Guo et al., 2023) gath-
ers a set of open-ended questions derived from five
different online sources. Each question is associ-
ated with a human-written answer, as well as the
response given by ChatGPT when prompted with
the same question. Thus, this corpus provides an
explicit comparison between human-written and
LLM-generated responses to questions covering
different topics and writing styles.

In the context of this study, 800 questions are ran-
domly sub-sampled from the four splits that contain
organic QA pairs: medicine (from Medical Dialog
dataset (Zeng et al., 2020)), reddit_eli5 (from ELI5
dataset (Fan et al., 2019)), finance (from FiQA
dataset (Maia et al., 2018)), and open_qa (from
WikiQA dataset (Yang et al., 2015)). These sam-
ples are then augmented with responses generated
by seven LLMs other than ChatGPT. This process
results in the subsampled Human LLM Compar-
ison Corpus (H-LLMC2), a parallel corpus of 3
200 questions, balanced between the four selected
sources, each associated with a human answer and
the outputs of LLMs (compared to 24 322 ques-
tions with parallel human and ChatGPT answers
for HC3)1.

2.2 Evaluated Models
H-LLMC2 is assembled by including responses
generated by smaller open-weights LLMs from dif-

1The dataset is available at https://huggingface.co/
datasets/noepsl/H-LLMC2. The code is available at https:
//github.com/d-noe/LLM_emb_CAT.

ferent families, and resulting from different instruc-
tion tuning and reinforcement learning paradigms.

In addition to ChatGPT, responses to the ques-
tions are generated with Llama 2 Chat models (7B,
13B) (Touvron et al., 2023), Llama 3.1 Instruct
models (8B) (Grattafiori et al., 2024), Qwen 2.5
Instruct models (7B, 14B) (Team, 2024), as well
as corresponding reasoning-distilled versions from
DeepSeek (8B, 14B) (DeepSeek-AI, 2025).

2.3 Encoder-based analytical framework

Modern neural encoder models are leveraged in
order to compare human-written questions with
human-produced and LLM-generated answers in
their similarities and particularities.

2.3.1 Encoders

High-dimensional representations of the texts
are obtained with different encoder-only models
trained to represent different textual features, while
focusing respectively on content and form. Both of
the encoder models, selected to represent semantic
and stylistic features, rely on contrastive learning
but use different data and objectives during training,
hence optimizing different properties.

Semantic Space GIST-Embedding-v02 (Sola-
torio, 2024) is a model fine-tuned on top of
bge-base-en-v1.5 (Xiao et al., 2023), which
demonstrates SoTA performances across various
tasks from MTEB (Muennighoff et al., 2023). This
model is selected to embed texts within a semanti-
cally coherent space.

Stylistic Space styledistance3 (Patel et al.,
2025), fine-tuned on top of roberta-base, was se-
lected to produce representations of the texts’ style
as it embeds texts with similar writing styles closely
and texts with different styles far apart, regardless
of content. The model was trained on 40 stylistic
features spanning seven broad groups—syntactic
features (e.g., passive vs. active voice), graphical
and digital features (uppercase, emoji, text-emoji),
emotional & cognitive tone, stylistic/aesthetic de-
vices (formality, metaphors, humour), social and
interpersonal features (politeness, offensiveness,
self- vs. audience focus), lexical preferences (long
words, nominalisations) and temporal/aspectual

2https://huggingface.co/avsolatorio/
GIST-small-Embedding-v0

3https://huggingface.co/StyleDistance/
styledistance

https://huggingface.co/datasets/noepsl/H-LLMC2
https://huggingface.co/datasets/noepsl/H-LLMC2
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https://huggingface.co/avsolatorio/GIST-small-Embedding-v0
https://huggingface.co/avsolatorio/GIST-small-Embedding-v0
https://huggingface.co/StyleDistance/styledistance
https://huggingface.co/StyleDistance/styledistance
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Figure 1: Median pairwise cosine similarities between questions and answers (bars) and specificity scores (in
red), grouped by data sources, within the semantic representation space (top) and stylistic one (bottom). Error
bars represent 95% bootstrapped confidence intervals. For specificity, in red, triangles up and down represent
scores above, resp. below, zero. Filled triangles indicate scores significantly above zero according to a one-sample
Wilcoxon signed-rank test (p < 0.05).

framing (usage of present vs. past or future fo-
cussed language).

2.3.2 Measures in Representation Spaces
The vector representations of the questions and
answers are examined using pairwise QA measures,
as well as contextualized metrics devised to put the
results into perspective within the corpus.

Similarity Building upon traditions in the
encoder-based literature, cosine similarity is used
as a measure of similarity within the embedding
spaces. The similarity scores provide one-to-one
comparison between the questions and answers.

Specificity Although similarity scores quantify
the amount of resemblance between vector pairs,
they do not inform on any potential adaptation
within the embedding space. Thus, in an attempt
to measure such effects, a specificity metric is de-
vised to contrast pairwise similarity scores with
an averaged behavior. The specificity score, de-
fined in Equation 1, quantifies the degree to which
an answer ai (i = 1, · · · , N ) is tailored to its cor-
responding pair qi, relative to a set of questions
{qj}Nj=1. Conceptually, it addresses the question:
How much better does the answer match its asso-
ciated question compared to all other questions in
the corpus?

Inspired by contrastive representation learning
objectives, particularly InfoNCE (Sohn, 2016), this
metric compares the similarity between each an-
swer and its paired question against its similarity

to non-target questions in a shared representation
space. It is computed as:

Spec(ai) = log

(
em(ai,qi)

1
N−1

∑
j ̸=i e

m(ai,qj)

)
(1)

where m is a similarity function between answer-
question pairs. While omitted for simplicity, m
usually operates on vector representations derived
from a text encoder E, so that m(ai, qj) denotes
m(E(ai), E(qj)).

This self-contained, corpus-relative metric en-
ables interpretable evaluation of answer specificity.
Positive scores mean that answers are more similar
to their target question than to others, indicating
more tailored responses, whereas negative scores
suggest that the answers align more closely with
unrelated questions, revealing more generic or non-
specific replies. The magnitude of the score further
quantifies the degree of this effect.

In the following, the specificity scores are calcu-
lated with encoder models introduced in subsubsec-
tion 2.3.1 and m is the cosine similarity. Plus, the
specificities are computed within subcorpora, i.e.,
between questions and answers originating from
the same source.

3 Results & Discussion

Figure 1 showcases the results of the analysis. The
cosine similarities, displayed as bars, and speci-
ficity scores, displayed as red triangles, reveal con-
trasting linguistic alignment strategies between hu-
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man and LLM communication. At the same time,
various LLMs (from different model families and
sizes) that we tested, do not seem to differ from
each other in their alignment strategies.

3.1 Semantic
Figure 1’s top row shows that, for every source,
LLMs produce responses that are semantically
more similar to the questions than humans do. To
delve further into this result, we analyzed the av-
erage proportion of words in the responses that
share the same lemma as words in the questions
(see Appendix B). This analysis shows that the
main observation highly correlates with, and may
stem from, the fact that LLMs re-use larger propor-
tions of words (or lemmas) from the questions.

Likewise, LLMs’ responses are more specific
than humans’ ones within the semantic represen-
tation space. Nonetheless, as expected, the one-
sample Wilcoxon signed rank tests reveal that all
specificity scores’ median lie significantly above
zero for humans and tested LLMs in all contexts.
In terms of QA pairs as information exchange, this
is desirable as it signals higher capacity to tackle
questions’ content, stay on the point, and to provide
answers more tailored towards the topic of inquiry.

3.2 Stylistic
Conversely, computations within the stylistic repre-
sentation space, as shown in Figure 1’s bottom row,
reveal an opposite pattern.

It is important to note that we interpret cosine
proximity in the styledistance space solely in
reference to the training methodology and results
as described in Patel et al. (2025), i.e. we read
it as an overlap across the 40-feature style palette
that the model was explicitly trained to tease apart.
Texts that align on most or all 40 coordinates clus-
ter tightly, whereas divergence on even a handful
of features (e.g., the answer is informal and emoji-
rich while the question is formal and emoji-free)
pushes their vectors apart. In the authors’ bench-
marks, sentence pairs written in the same style con-
sistently achieve cosine similarities around 0.70 or
higher, whereas stylistically divergent paraphrases
fall markedly lower. Guided by these results, we
interpret higher cosine scores in our QA pairs as ev-
idence that the answer mirrors the stylistic choices
of the question across the 40-feature palette (e.g.,
formality, emoji usage). All similarity statistics are
analysed comparatively rather than against a fixed
threshold.

For subcorpora where long enough question
lengths, and hence sufficient style information, is
available (i.e., within medicine and reddit_eli5 that
have median questions length of 71 and 43 words),
human-written answers exhibit high stylistic simi-
larity to the respective questions. LLM-generated
answers show relatively low stylistic similarities
across the board. In the subcorpora with short ques-
tion lengths and hence insufficient linguistic style
information, (in finance and open_qa, which have
median question lengths of 12 and 6 words respec-
tively), the higher margin in style alignment for
humans disappears.

Moreover, the stylistic specificity computa-
tions expose statistical evidences of adaptation
for human-written answers in all splits except for
open_qa, whereas none of the tested LLMs exhibits
such dynamic in any of the contexts. LLMs even
disclose negative values in all but reddit_eli5 sub-
corpus, meaning that the style of LLM-generated
responses is generic and does not accommodate
to the prompts’ styles. This phenomenon may, at
least in part, be explained by their training objec-
tives. LLMs are primarily next-token predictors,
trained to generate coherent text through exten-
sive exposure to large corpora. This process may
lead to a smoothed distribution over the vocabu-
lary (Diehl Martinez et al., 2024; Guo et al., 2024),
resulting in more generic discourse styles. Never-
theless, it is important to note that even for humans
the specificity scores for style similarities are quite
low.

To summarize, the results show that LLMs
maintain high semantic alignment with the ques-
tions with which they were prompted —generat-
ing responses that are straightforward, factual and
strictly-framed—, but do so in a generic style that
often falls short of human standards in terms of
similarity and doesn’t exhibit specific adaptation
to the questions. Humans, on the other hand, show
lower semantic alignment to the questions asked. A
close reading of a subsample of responses suggests
that this is because of a greater variety in response
conceptualization, for instance, use of metaphors,
stories and deviations. At the same time, humans
show relatively higher stylistic alignment.

4 Conclusion

This study contributes to a growing body of work
examining how language models compare to hu-
mans in conversational settings. It analyzes ques-
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tion answering approaches in LLMs and con-
trasts them with human behavior by introducing
H-LLMC2, an augmented version of a sample of
HC3, a corpus of human-written questions and par-
allel sets of respective answers written by humans
and various LLMs. The similarity and specificity of
responses are assessed within representation spaces
encoding semantics and style. While no major dis-
tinctions are observed between various LLMs (of
different sizes and model-families), the findings re-
veal interesting contrasts between LLM-generated
and human-written answers. LLMs tend to exhibit
higher semantic similarity with high specificity,
but don’t reach human-level stylistic similarity.
Human-written answers exhibit a reverse pattern,
with lower semantic but higher stylistic similarity
to the respective questions (when questions lengths
are long enough). These findings point to contrast-
ing linguistic accommodation strategies evident in
human and LLM communication. These results
invite further exploration into the conversational
dynamics of LLMs, particularly with regard to how
they differ from human behavior, and prompt re-
flection on strategies that could foster more natural
communicative practices. Inference from the ex-
tensive literature on linguistic accommodation sug-
gests that bringing stylistic and semantic alignment
strategies in LLM responses closer to human behav-
ior can enhance social attunement and engagement
in human-AI dialogue.

Limitations

This study heavily relies on representation spaces
and notions of similarities within such high-
dimensional spaces. The notions of semantics
and style encoded by the models are learned and
may lack transparency and clearer interpretability.
Moreover, while largely adopted in the literature
and often preferred to other scores, the soundness
of using cosine similarity has recently been dis-
cussed (Steck et al., 2024). Future work would
benefit from incorporating human judgments of
perceived alignment and answer quality as a com-
plement or counterpoint to the computational meth-
ods. This would help validate or challenge the
results, and contribute in bringing valuable context
from a human-centered or social perspective.

Furthermore, while H-LLMC2 offers a clear
framework to compare in parallel human-written
answers and LLM-generated responses to the same
questions, the size of the questions, especially

within finance and open_qa subsets, may impair
embedding robustness, thus harming interpretation
possibilities. Alternatively, the use of deeper cate-
gorization based on intent or question types, rather
than questions’ source, could offer finer granularity
to interpret the results and potentially provide new
insights into the data.
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A H-LLMC2 Details

A.1 Technical Details
The responses generated with open-weights LLMs
to assemble H-LLMC2 was performed on a sin-
gle machine equipped with NVIDIA GeForce
RTX 3090 Ti GPU (24GB), and relied on the
transformers4 library, except for the data gener-
ated for DeepSeek-R1-8B, which was generated on
M2-powered MacBook Pro and relied on ollama5

implementation. The models used for generation
were quantized, loaded in 8 bits, or converted to
4-bits for ollama (Q4_K_M version). The version of
ChatGPT used to create HC3 is not mentionned
explicitly, but is prior to January 2023 (date of pub-
lication on HuggingFace).

A.2 Summary statistics
Table 1 provides an overview of the word count
distribution per split within H-LLMC2, both for
question and answers from human and LLMs. The
number of words is approximated using whitespace
splitting.

B Textual Analysis

Figure 2 shows the average proportion of words in
the responses that share the same lemma6 as words
in the questions. Higher values mean that responses
tend to be closer semantically to the questions. As
can be observed on Figure 2, the shared propor-
tion is consistently higher for LLMs, compared to
human-written answers. Across the whole corpus,
the median among LLM is 60%, compared to 38%
for humans.

4https://github.com/huggingface/transformers
5https://ollama.com
6obtained with spaCy library (en_core_web_sm version)

Percentiles
0 25 50 75 100

m
ed

ic
in

e

question 60 65 71 79 97
human 10 53 74 102 336
chatgpt 76 155 185 216 407
L2-7B-Chat 162 301 319 333 404
L2-13B-Chat 201 304 323 337 422
L3.1-8B-Inst 14 27 42 327 411
Q2.5-7B-Inst 4 303 343 393 1596
Q2.5-14B-Inst 1 218 278 316 578
DS-R1-8B 59 191 225 255 556
DS-R1-14B 26 210 244 276 465

re
dd

it_
el

i5
question 31 37 43 48 54
human 8 56 100 189 1707
chatgpt 52 141 176 210 639
L2-7B-Chat 88 247 290 327 421
L2-13B-Chat 9 257 300 339 416
L3.1-8B-Inst 4 286 343 392 438
Q2.5-7B-Inst 5 216 262 313 688
Q2.5-14B-Inst 1 175 211 247 509
DS-R1-8B 10 119 166 203 402
DS-R1-14B 50 135 185 225 512

fin
an

ce

question 8 10 12 15 31
human 2 75 138 226 1629
chatgpt 22 173 208 247 427
L2-7B-Chat 42 310 345 367 423
L2-13B-Chat 79 321 348 368 417
L3.1-8B-Inst 4 329 370 392 441
Q2.5-7B-Inst 2 288 363 434 1487
Q2.5-14B-Inst 1 240 307 363 572
DS-R1-8B 14 198 243 286 756
DS-R1-14B 13 214 261 305 488

op
en

_q
a

question 5 5 6 8 17
human 2 20 27 38 206
chatgpt 5 75 104 152 595
L2-7B-Chat 7 131 249 322 426
L2-13B-Chat 4 115 236 317 415
L3.1-8B-Inst 6 145 245 340 454
Q2.5-7B-Inst 8 59 122 231 1518
Q2.5-14B-Inst 1 44 80 163 473
DS-R1-8B 7 63 111 215 966
DS-R1-14B 6 54 92 192 466

Table 1: Word count percentiles per data source and
input/output types (’L’ stands for Llama, ’Q’ for Qwen
and ’DS’ for DeepSeek).

https://ollama.com
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Figure 2: Mean proportion of lemma reused in answer provided by humans and LLMs with 95% bootstrapped
confidence intervals, grouped by data sources.
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