@inproceedings{costa-kosseim-2025-multi-task,
title = "A Multi-Task and Multi-Label Classification Model for Implicit Discourse Relation Recognition",
author = "Costa, Nelson Filipe and
Kosseim, Leila",
editor = "B{\'e}chet, Fr{\'e}d{\'e}ric and
Lef{\`e}vre, Fabrice and
Asher, Nicholas and
Kim, Seokhwan and
Merlin, Teva",
booktitle = "Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = aug,
year = "2025",
address = "Avignon, France",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.sigdial-1.18/",
pages = "231--245",
abstract = "We propose a novel multi-label classification approach to implicit discourse relation recognition (IDRR). Our approach features a multi-task model that jointly learns multi-label representations of implicit discourse relations across all three sense levels in the PDTB 3.0 framework. The model can also be adapted to the traditional single-label IDRR setting by selecting the sense with the highest probability in the multi-label representation. We conduct extensive experiments to identify optimal model configurations and loss functions in both settings. Our approach establishes the first benchmark for multi-label IDRR and achieves SOTA results on single-label IDRR using DiscoGeM. Finally, we evaluate our model on the PDTB 3.0 corpus in the single-label setting, presenting the first analysis of transfer learning between the DiscoGeM and PDTB 3.0 corpora for IDRR."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="costa-kosseim-2025-multi-task">
<titleInfo>
<title>A Multi-Task and Multi-Label Classification Model for Implicit Discourse Relation Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nelson</namePart>
<namePart type="given">Filipe</namePart>
<namePart type="family">Costa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leila</namePart>
<namePart type="family">Kosseim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabrice</namePart>
<namePart type="family">Lefèvre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Asher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teva</namePart>
<namePart type="family">Merlin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Avignon, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel multi-label classification approach to implicit discourse relation recognition (IDRR). Our approach features a multi-task model that jointly learns multi-label representations of implicit discourse relations across all three sense levels in the PDTB 3.0 framework. The model can also be adapted to the traditional single-label IDRR setting by selecting the sense with the highest probability in the multi-label representation. We conduct extensive experiments to identify optimal model configurations and loss functions in both settings. Our approach establishes the first benchmark for multi-label IDRR and achieves SOTA results on single-label IDRR using DiscoGeM. Finally, we evaluate our model on the PDTB 3.0 corpus in the single-label setting, presenting the first analysis of transfer learning between the DiscoGeM and PDTB 3.0 corpora for IDRR.</abstract>
<identifier type="citekey">costa-kosseim-2025-multi-task</identifier>
<location>
<url>https://aclanthology.org/2025.sigdial-1.18/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>231</start>
<end>245</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-Task and Multi-Label Classification Model for Implicit Discourse Relation Recognition
%A Costa, Nelson Filipe
%A Kosseim, Leila
%Y Béchet, Frédéric
%Y Lefèvre, Fabrice
%Y Asher, Nicholas
%Y Kim, Seokhwan
%Y Merlin, Teva
%S Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2025
%8 August
%I Association for Computational Linguistics
%C Avignon, France
%F costa-kosseim-2025-multi-task
%X We propose a novel multi-label classification approach to implicit discourse relation recognition (IDRR). Our approach features a multi-task model that jointly learns multi-label representations of implicit discourse relations across all three sense levels in the PDTB 3.0 framework. The model can also be adapted to the traditional single-label IDRR setting by selecting the sense with the highest probability in the multi-label representation. We conduct extensive experiments to identify optimal model configurations and loss functions in both settings. Our approach establishes the first benchmark for multi-label IDRR and achieves SOTA results on single-label IDRR using DiscoGeM. Finally, we evaluate our model on the PDTB 3.0 corpus in the single-label setting, presenting the first analysis of transfer learning between the DiscoGeM and PDTB 3.0 corpora for IDRR.
%U https://aclanthology.org/2025.sigdial-1.18/
%P 231-245
Markdown (Informal)
[A Multi-Task and Multi-Label Classification Model for Implicit Discourse Relation Recognition](https://aclanthology.org/2025.sigdial-1.18/) (Costa & Kosseim, SIGDIAL 2025)
ACL