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Abstract

We propose a novel multi-label classification
approach to implicit discourse relation recog-
nition (IDRR). Our approach features a multi-
task model that jointly learns multi-label repre-
sentations of implicit discourse relations across
all three sense levels in the PDTB 3.0 frame-
work. The model can also be adapted to the
traditional single-label IDRR setting by select-
ing the sense with the highest probability in the
multi-label representation. We conduct exten-
sive experiments to identify optimal model con-
figurations and loss functions in both settings.
Our approach establishes the first benchmark
for multi-label IDRR and achieves SOTA re-
sults on single-label IDRR using DiscoGeM. Fi-
nally, we evaluate our model on the PDTB 3.0
corpus in the single-label setting, presenting the
first analysis of transfer learning between the
DiscoGeM and PDTB 3.0 corpora for IDRR.

1 Introduction

Implicit discourse relation recognition (IDRR) is
one of the most challenging tasks in computational
discourse analysis. Its goal is to identify the sense
of discourse relations connecting text arguments
in the absence of explicit discourse connectives,
such as but and because. The Penn Discourse
Treebank (PDTB) (Miltsakaki et al., 2004; Prasad
et al., 2008a) organizes discourse senses across
three hierarchical levels with increasing degrees
of detail (Webber et al., 2019). However, under-
standing the sense of a discourse relation can be
a complex and subjective task without the guid-
ance of discourse connectives. Consider the two
arguments of the implicit discourse relation below:

Arg1: The lights flickered.
Arg2: The power went out.
In this example, it is not clear whether the two

arguments of the relation are related by a temporal
or causality relation. One could interpret that the
lights flicked and then the power went out, or that

the lights flickered because the power went out.
This ambiguity illustrates the biggest challenge of
IDRR. Despite its difficulty, IDRR plays a crucial
role in downstream tasks that rely on text coherence.
In summarization, for example, it helps preserve
the logical flow and rhetorical intent of the source
text. In dialogue systems, it supports coherence
and intent modeling by inferring how utterances
relate to each other, improving dialogue discourse
parsing (Li et al., 2024; Thompson et al., 2024).

To date, most research on IDRR has relied on
the different iterations of the PDTB corpus (Prasad
et al., 2008b, 2019). However, despite significant
efforts, SOTA performance on IDRR has plateaued
in recent years at F1-Scores of 71.59 at level-1
and 57.62 at level-2 (Long and Webber, 2022; Liu
and Strube, 2023; Chan et al., 2023; Zhao et al.,
2023; Zeng et al., 2024; Long and Webber, 2024).
One possible reason may be the inherently sub-
jective nature of implicit discourse interpretation,
which can be difficult to capture using predomi-
nantly single-label annotated corpora (Stede, 2008;
Rohde et al., 2016; Scholman and Demberg, 2017;
Hoek et al., 2021). The idea of possible multi-
ple relations between discourse arguments had al-
ready been considered in the Segmented Discourse
Representation Theory (SDRT) (Asher and Las-
carides, 2003) and the ambiguity in the annotation
of implicit relations has been further highlighted by
the challenges in mapping them across discourse
frameworks (Demberg et al., 2019; Costa et al.,
2023). In light of these challenges, recent studies
have advocated for the multi-label annotation of
implicit relations to better capture their nuanced
and complex nature in discourse corpora (Yung
et al., 2019; Pyatkin et al., 2020; Scholman et al.,
2022a,b; Pyatkin et al., 2023; Yung and Demberg,
2025). This shift in perspective has led to the cre-
ation of DiscoGeM (Scholman et al., 2022a) - the
first multi-label annotated corpus of implicit dis-
course relations.
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Following recent work in NLP (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020; Basile et al.,
2021; Fornaciari et al., 2021; Uma et al., 2021;
Plank, 2022; Jiang and de Marneffe, 2022), we see
disagreement between humans annotators not as
noise, but as an opportunity to enhance the rel-
evance of IDRR models by capturing the com-
plexity of human interpretations. This paper ad-
dresses the subjectivity in IDRR by proposing a
multi-task classification model capable of learn-
ing both multi-label and single-label representa-
tions of implicit discourse relations. Our model is
trained on the DiscoGeM corpus and uses a multi-
task architecture to leverage the interdependence
between senses and jointly learn sense representa-
tions across all three sense levels in the PDTB 3.0
hierarchy. The main contributions of this work are:

• We present the first multi-label approach in
IDRR which produces probability distribu-
tions over all possible sense labels of a dis-
course relation using the DiscoGeM corpus.
Our multi-label model can then be adapted to
the traditional single-label task by selecting
the label with the highest probability.

• We conduct extensive experiments, compar-
ing different pre-trained language models as
encoders of our model and evaluating how dif-
ferent loss functions impact performance in
multi-label and single-label IDRR.

• We establish the first benchmark on multi-
label IDRR and achieve SOTA results on
single-label IDRR using DiscoGeM.

• We present an in-depth analysis on the poten-
tial of transfer learning between the Disco-
GeM and the PDTB 3.0 corpora on single-
label IDRR.

2 Previous Work

Despite the recent advances in natural language
understanding, IDRR remains one of the most chal-
lenging tasks in discourse analysis. Most previous
work addressed IDRR as a single-label classifica-
tion task by fine-tuning (Long and Webber, 2022;
Liu and Strube, 2023) or prompt-tuning (Chan
et al., 2023; Zhao et al., 2023; Zeng et al., 2024;
Long and Webber, 2024) pre-trained language
models (PLMs). More precisely, Long and Web-
ber (2022) apply contrastive learning and aug-
ment training data with explicit connectives from

PDTB 3.0 metadata to fine-tune their model, while
Liu and Strube (2023) propose a two-step pipeline
that first generates an explicit connective for each
relation to fine-tune a classifier on the modified in-
put. Chan et al. (2023) inject hierarchical structure
and connective-based explanations into prompts,
enabling joint predictions across all three PDTB
sense levels. Zhao et al. (2023) address data
scarcity in IDRR by using a parameter-efficient
prompt-tuning framework that incorporates hier-
archical label guidance into the verbalizer. Build-
ing on this, Zeng et al. (2024) propose a prompt-
tuning approach that integrates both global and
local hierarchical label information into the verbal-
izer to improve output alignment with pre-trained
objectives. Finally, Long and Webber (2024) intro-
duce a prototype-based verbalizer informed by the
PDTB 3.0 sense hierarchy, combining contrastive
and prototype learning to eliminate the need for
manually designed verbalizers. While most of
these approaches (Long and Webber, 2022; Liu and
Strube, 2023; Zhao et al., 2023; Zeng et al., 2024;
Long and Webber, 2024) use RoBERTabase (Liu
et al., 2019) as their PLM, Chan et al. (2023) uses
T5base (Raffel et al., 2020). Another line of work
tried to solve single-label IDRR by directly prompt-
ing large language models (LLMs) through prompt-
engineering (Chan et al., 2024; Yung et al., 2024).
However, both works show that the results obtained
through directly prompting LLMs in zero-shot and
few-shot settings are still far behind from those
obtained through fine-tuning and prompt-tuning
PLMs.

The shift toward multi-label annotation has
stirred an initial wave of research in multi-label
IDRR. For instance, Long et al. (2024) used the
4.9% of implicit relations in the PDTB 3.0 cor-
pus that are annotated with two senses to build a
model capable of predicting up to two senses per in-
stance. However, given that the 95.1% of PDTB 3.0
annotations remain single-label, their model pre-
dominantly produces single-label predictions. In
contrast, Yung et al. (2022) and Costa and Kos-
seim (2024) also use the multi-label DiscoGeM
corpus but convert its annotations into a single-
label format during training. Thus, to date, no
previous work has truly captured the full multi-
label representation of implicit discourse relations
- with the exception of our work on multi-lingual
IDRR (Costa and Kosseim, 2025), where we con-
sider multi-label IDRR in a multi-lingual setting in-
corporating hierarchical learning in the training of
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our classification model and comparing it against
LLMs via direct prompting with few-shot learn-
ing. Similar to other works (Chan et al., 2024;
Yung et al., 2024), we found that prompting LLMs
leads to worst results compared to the fine-tuning
of PLMs such as RoBERTa in the context of IDRR.
Therefore, we do not consider prompting LLMs in
this paper.

3 Our Approach

In this work, we introduce a novel multi-task clas-
sification model for IDRR that simultaneously
predicts sense distributions across all three lev-
els in the PDTB 3.0 framework. As illustrated
in Figure 1, the model processes a concatenated
pair of discourse arguments (ARG1+ARG2) us-
ing RoBERTa (Liu et al., 2019) as the PLM en-
coder1. The resulting contextualized embedding is
passed through a linear transformation and dropout
layer and subsequently fed to three distinct clas-
sification heads - each corresponding to a sense
level in the hierarchy. In the multi-label setting,
each head outputs a probability distribution over
the available senses at its respective level. In the
single-label setting, we apply an additional pooling
layer that selects the sense with the highest prob-
ability from each distribution. We use the Adam
optimizer (Kingma and Ba, 2015) to minimize the
loss function, which we calculate as the sum of the
individual losses of each classification head.

Multi-Label Classification. For each multi-label
classification head, we compute the loss using the
mean absolute error (MAE) loss function (see Equa-
tion 2 in Appendix B), which we found to yield
better performance (as detailed in Section 5.1). Fol-
lowing previous work in multi-label classification
for NLP (Pyatkin et al., 2023; van der Meer et al.,
2024), we evaluate model performance in this set-
ting using the Jensen-Shannon (JS) distance (Lin,
1991) to measure the similarity between the pre-
dicted and target probability distributions.

Single-Label Classification. In the single-label
setting, we compute the loss for each classification
head using the cross-entropy (CE) loss function
(see Equation 1 in Appendix B), which emphasizes
the correct classification of the highest probability
sense label (as discussed in Section 5.1). We eval-
uate model performance in this setting using the

1We also experimented with other PLMs, but RoBERTa
achieved the best performance (see Section 5.1).
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Figure 1: Architecture of our multi-task classification
model for IDRR. Given a pair of discourse arguments
as input, the model generates one output per sense level
in the PDTB 3.0 framework. In the multi-label setting,
each output is a probability distribution over the senses
at the corresponding level. In the single-label setting,
the sense with the highest probability is selected via the
pooling layers (indicated by dashed lines).

weighted F1-score based on the majority label in
the predicted and target sense distributions.

4 Data Preparation

We used two different discourse annotated corpora
in this work: DiscoGeM (Scholman et al., 2022a)
and PDTB 3.0 (Prasad et al., 2019). Our model was
trained exclusively on the DiscoGeM corpus and
evaluated on both DiscoGeM (for multi-label and
single-label classification) and on PDTB 3.0 (for
single-label classification). Although the two cor-
pora differ in annotation methodologies, both fol-
low the same discourse framework (Webber et al.,
2019). This shared foundation allowed us to di-
rectly evaluate the transfer learning potential of
training our model on DiscoGeM and evaluating it
on PDTB 3.0 in single-label IDDR.

4.1 DiscoGeM

The DiscoGeM corpus contains 6,807 implicit dis-
course relations drawn from four textual genres:
2,800 relations from political texts, 3,060 from lit-
erary texts, 645 from encyclopedic texts and 302 re-
lations extracted from the PDTB 3.0 corpus. Each
relation was independently annotated by at least 10
crowdworkers and the resulting annotations were
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aggregated to form a probability distribution over
29 discourse senses in the PDTB 3.0 framework -
the BELIEF and the SPEECH-ACT level-2 senses
were not annotated in DiscoGeM.

Since the DiscoGeM corpus did not include the
CAUSE+BELIEF sense from the standard set of
14 level-2 senses proposed by Kim et al. (2020)
for IDRR classification in the PDTB 3.0 frame-
work, we replaced it with the SIMILARITY sense
(the most frequent among the remaining level-2
senses) to preserve a 14-label set. In addition to
classifying senses at level-1 and level-2, we also
incorporated level-3 sense labels when available.
When no level-3 sense was available, we defaulted
to their corresponding level-2 sense as replacement.
Table 8 in Appendix A shows the distribution of
senses across all levels in the original DiscoGeM
annotations and in our adapted label set.

For single-label classification, we replaced the
multi-label sense distribution of each discourse re-
lation by the sense with the highest score - referred
to as the majority label. To reduce computational
complexity and maintain consistency across model
evaluations, we used the same training, validation
and testing splits in both the multi-label and the
single-label settings. We split 70% of the corpus
for training, 10% for validation and 20% for test-
ing. To ensure a balanced distribution, we kept the
same distribution of majority labels across all data
splits (see Figure 2 in Appendix A). We opted for a
fixed split of the data, instead of multiple folds for
cross-validation, to streamline the experimentation
process as we conducted an extensive number of
experiments.

4.2 PDTB 3.0
The PDTB 3.0 corpus was annotated by expert
annotators and consists of 53,631 discourse rela-
tions extracted from Wall Street Journal news arti-
cles - from which 21,827 are implicit. Since there
are currently no other benchmarks in multi-label
IDRR using DiscoGeM and the majority of re-
search in IDRR relies on the single-label annotated
PDTB 3.0 corpus, we also evaluated our model on
the traditional single-label classification task using
different test splits of the PDTB 3.0 corpus through
transfer learning.

To allow transfer learning between the two cor-
pora, we used the same set of 14 level-2 senses
described in Section 4.1. Following the common
approach to IDRR, we only kept the level-1 and
level-2 senses in the PDTB 3.0. To compare our

Top-1 Top-3 Top-5 Top-10

92 (30.5%) 164 (54.3%) 197 (65.2%) 215 (71.2%)

Table 1: Number of instances where the reference label
in the PDTB 3.0 was found within the top-k labels in
DiscoGeM for the set of 302 co-annotated relations.

work against SOTA models in single-label IDRR,
we replicated the two commonly used Lin (Lin
et al., 2009) and Ji (Ji and Eisenstein, 2015) test
splits - the former uses section 23 in the PDTB 3.0
corpus as the test set, while the latter uses sections
21-22. However, since recent works highlighted
the limitations of using such small test sets to draw
meaningful conclusions (Shi and Demberg, 2017;
Kim et al., 2020), we also generated test splits fol-
lowing the cross-validation scheme proposed by
Kim et al. (2020). Table 9 in Appendix A shows
the total number of level-2 sense instances on the
different single-label test sets.

4.3 Corpora Agreement

Since a total of 302 implicit discourse relations
taken from the PDTB 3.0 were also independently
annotated in DiscoGeM, we calculated the annota-
tion agreement between the two corpora over this
overlapping set of relations. Table 1 reports the
number of relations where the PDTB 3.0 reference
label matches the majority label (top-1) in Disco-
GeM, or appears within its top-3, top-5, or top-10
majority labels. The fact that for 28.8% of the
jointly annotated relations, the reference label from
the PDTB 3.0 corpus was not selected by at least
one of the annotators of DiscoGeM illustrates the
variability in human interpretation of implicit dis-
course relations - even when annotations are based
on the same underlying framework.

5 Experiments

To optimize our model (illustrated in Figure 1), we
explored multiple model configurations and loss
functions using the validation set of DiscoGeM.
All of the results reported in the following sections
are the average scores of three different runs with
different random starts for 10 epochs and with a
batch size of 16. We ran our experiments on a 32-
core compute node with 512GB of RAM. All of
the code used can be found on GitHub2.

2https://github.com/nelsonfilipecosta/
Implicit-Discourse-Relation-Recognition

https://github.com/nelsonfilipecosta/Implicit-Discourse-Relation-Recognition
https://github.com/nelsonfilipecosta/Implicit-Discourse-Relation-Recognition


235

PLM Loss
JS Distance ↘ (Multi-Label) F1-Score ↗ (Single-Label)

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3

BERT
MAE 0.314± 0.004 0.461± 0.007 0.535± 0.004 63.34± 1.41 46.44± 0.82 39.20± 1.82

CE 0.328± 0.004 0.563± 0.002 0.634± 0.004 63.49± 1.38 51.42± 0.58 47.65± 0.92

DistilBERT
MAE 0.330± 0.006 0.472± 0.003 0.543± 0.003 61.29± 0.96 39.29± 0.66 31.75± 0.55

CE 0.341± 0.005 0.571± 0.006 0.639± 0.003 60.28± 0.58 45.55± 1.52 41.19± 1.50

RoBERTa
MAE 0.304± 0.010 0.448± 0.006 0.530± 0.004 65.12± 1.20 51.81± 1.54 42.99± 1.09

CE 0.317± 0.003 0.561± 0.003 0.630± 0.005 65.48± 0.82 53.51± 0.39 49.55± 0.11

DistilRoBERTa
MAE 0.318± 0.001 0.463± 0.003 0.539± 0.004 61.30± 0.38 42.75± 1.63 34.96± 1.29

CE 0.329± 0.002 0.564± 0.005 0.636± 0.003 65.02± 0.69 52.83± 0.71 47.94± 0.88

Table 2: Results of experimenting with different pre-trained language models (PLMs) and different loss functions
in multi-label classification (JS distance) and in single-label classification (weighted F1-score). The results were
averaged across three different runs with random starts. Values in bold show the best score for each metric.

5.1 Model Selection

Motivated by prior work suggesting that PLMs
trained with a next sentence prediction (NSP) ob-
jective perform better on IDRR (Shi and Dem-
berg, 2019), we compared BERT (Devlin et al.,
2019), which includes the NSP objective, against
RoBERTa (Liu et al., 2019), which omits it.
RoBERTa has also been widely adopted in SOTA
single-label IDRR models (Long and Webber,
2022; Liu and Strube, 2023; Zhao et al., 2023; Zeng
et al., 2024; Long and Webber, 2024), making it
a strong baseline. To further explore efficiency-
performance trade-offs, we also evaluated distilled
variants of both models (Sanh et al., 2019). Each
PLM configuration was evaluated using both the
mean absolute error (MAE) and cross-entropy (CE)
loss functions. The results of these experiments are
summarized in Table 2.

As shown in Table 2, RoBERTa consistently out-
performs BERT across both loss functions, yielding
lower Jensen-Shannon (JS) distances in the multi-
label setting and higher F1-scores in the single-
label setting across all sense levels. These results
suggest that the performance gains of using larger
models outweigh the previously reported advan-
tages of using models pre-trained on the NSP ob-
jective in IDRR (Shi and Demberg, 2019). In ad-
dition, both BERT and RoBERTa outperform their
respective distilled variants, reaffirming the benefit
of using full-sized models for this task. The results
in Table 2 also show that the choice of loss func-
tion plays an important role. Models trained with
MAE consistently achieve lower JS distances in the
multi-label setting, while model trained with CE
achieve higher F1-scores in the single-label setting.
We present a more detailed analysis on the perfor-
mance of each loss function in Appendix B, as well

as the results of training the different models with
the mean squared error (MSE) and the Huber loss
- which led to slightly worse results as shown in
Table 10 of the appendix. Based on these findings,
we selected RoBERTa as the backbone encoder of
our model, using MAE loss for multi-label classifi-
cation and CE loss for single-label classification.

5.2 Fine-Tuning

We fine-tuned our model separately with differ-
ent learning rates for multi-label and single-label
IDRR. Table 3 shows the results of fine-tuning
our model with the MAE loss in the multi-label
setting and with the CE loss in the single-label
setting. Under both settings, we observed per-
formance improvements with learning rates of
1× 10−5 and 5× 10−6. To further enhance model
performance with these two learning rates, we
also experimented incorporating two decay func-
tions: linear decay and cosine annealing with warm
restarts (Loshchilov and Hutter, 2017). For linear
decay, the learning rate was gradually reduced over
the first 5 epochs to half its initial value. In the co-
sine annealing schedule, the learning rate oscillated
between its original value and half that value over
two complete cycles across 10 epochs. As shown
in Table 3, the cosine annealing strategy with a
learning rate of 1× 10−5 achieved the best results
for multi-label classification, while the linear decay
schedule with a learning rate of 5 × 10−6 proved
most effective in the single-label setting.

6 Results

In this section, we present the results of our ex-
periments in two parts. Section 6.1 reports the
performance of our models on the DiscoGeM test
set for both multi-label and single-label IDRR and
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LR Decay
JS Distance ↘ (Multi-Label with MAE) F1-Score ↗ (Single-Label with CE)

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3

1e−4 − 0.386± 0.004 0.509± 0.003 0.569± 0.005 36.07± 1.67 21.61± 0.58 10.05± 0.99

5e−5 − 0.339± 0.041 0.478± 0.039 0.554± 0.016 64.71± 2.39 49.76± 1.65 45.52± 1.59

1e−5

− 0.304± 0.010 0.448± 0.006 0.530± 0.004 65.48± 0.82 53.51± 0.39 49.55± 0.11

Linear 0.305± 0.009 0.459± 0.007 0.547± 0.004 64.70± 0.35 54.32± 2.15 48.96± 0.81

CosAn 0.299± 0.004 0.447± 0.008 0.529± 0.008 65.15± 0.61 53.99± 1.17 49.56± 1.25

5e−6

− 0.303± 0.006 0.461± 0.005 0.548± 0.005 65.45± 0.36 53.67± 0.45 49.77± 1.15

Linear 0.315± 0.006 0.480± 0.007 0.566± 0.007 64.84± 1.14 55.86± 1.10 50.34± 1.55

CosAn 0.306± 0.003 0.469± 0.002 0.558± 0.004 65.40± 1.04 54.97± 1.85 49.62± 1.26

1e−6 − 0.348± 0.003 0.522± 0.005 0.613± 0.003 60.66± 1.38 47.66± 0.64 40.96± 0.48

Table 3: Results of experimenting with different learning rates and decay functions in multi-label classification (JS
distance) using the MAE loss and in single-label classification (weighted F1-score) using the CE loss. The results
were averaged across three different runs with random starts. Values in bold show the best score for each metric.

Section 6.2 presents the transfer learning results
of our single-label model evaluated on various test
splits of the PDTB 3.0 corpus.

6.1 Results on DiscoGeM

Table 4 presents the performance of our models
(trained with MAE and CE loss functions) on the
DiscoGeM test set for both multi-label and single-
label IDRR. Results in the multi-label setting are
reported using Jensen-Shannon (JS) distance, while
results in the single-label setting are reported using
weighted F1-score. As there is currently no prior
work on full multi-label IDRR, we include a base-
line for comparison. This baseline emulates the
DiscoGeM annotation protocol by generating ten
single-label predictions per relation, sampled from
the probability distribution of each sense at each
level, and then averaging them into a probability
distribution. In the single-label setting, we com-
pare our results against prior work evaluated on
DiscoGeM (Yung et al., 2022; Costa and Kosseim,
2024). As shown in Table 4, our model consis-
tently outperforms the random baseline across all
levels and achieves a substantial improvement over
the current SOTA in level-2 classification (Yung
et al., 2022). At level-3, our model performs at
par with the best reported results from Costa and
Kosseim (2024). It is worth noting that their model
was specifically trained to predict level-3 senses,
whereas our model is designed to generalize across
all three sense levels simultaneously.

6.2 Transfer Learning Results on PDTB 3.0

The results of transfer learning from DiscoGeM
to PDTB 3.0 on single-label IDRR are presented
in Table 5. We compare our model against SOTA

approaches in this task (Long and Webber, 2022;
Liu and Strube, 2023; Zhao et al., 2023; Zeng et al.,
2024; Long and Webber, 2024) and Yung et al.
(2022). As shown in Table 5, our model has a
lower performance than those trained on PDTB 3.0.
However, it is important to emphasize that our
model was trained exclusively on DiscoGeM and
did not see any PDTB 3.0 data in its training. The
lower performance in this zero-shot transfer learn-
ing setting, where no fine-tuning is done on the
target corpus, can also be explained by thelimited
agreement between the two corpora - as shown
in Table 1, the majority sense in DiscoGeM only
matched the PDTB 3.0 sense on 92 (30.5%) of
the co-annotated discourse relations. This also ex-
plains the contrast in performances shown in Ta-
bles 4 and 5 between our model and the one from
Yung et al. (2022), which was trained on the two
corpora. Our model performs significantly bet-
ter when evaluated on DiscoGeM, but worst when
evaluated on the PDTB 3.0. These findings suggest
that, to improve cross-corpus generalization, future
work should explore intermediate fine-tuning on
PDTB 3.0 after pretraining on DiscoGeM.

7 Analysis

To further evaluate the performance of our model,
we conduct two additional analyses. In Section 7.1,
we perform a per-sense evaluation to assess the
ability of the model to correctly classify individual
senses at both level-1 and level-2. In Section 7.2,
we evaluate the cross-level coherence of the predic-
tions by examining how well the predicted labels
at level-1 and level-2 align with the sense hierarchy
defined in the PDTB 3.0 framework. For ease of in-
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Models
JS Distance ↘ (Multi-Label) F1-Score ↗ (Single-Label)

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3

Baseline 0.519± 0.002 0.636± 0.001 0.714± 0.002 34.72± 1.63 22.42± 1.34 18.81± 0.80

(Yung et al., 2022) − − − − 23.66± 1.19 −
(Costa and Kosseim, 2024) − − − − − 51.38± n/a

Ours w/ MAE 0.299± 0.002 0.446± 0.003 0.523± 0.002 65.39± 0.54 50.13± 1.54 41.60± 0.59

Ours w/ CE 0.323± 0.003 0.564± 0.003 0.634± 0.002 65.89± 1.35 55.99± 1.73 50.82± 1.26

Table 4: Final results on the test set of DiscoGeM in multi-label classification (JS distance) and in single-label
classification (weighted F1-score). The results were averaged across three different runs with random starts. Values
in bold show the best score for each metric.

Models
F1-Score (PDTB 3.0)

Lin Ji Cross
Level-1 Level-2 Level-1 Level-2 Level-1 Level-2

Yung et al. (2022) − − − 38.07± 2.25 − −
Long and Webber (2022) − − 70.05± n/a 57.62± n/a − −

Liu and Strube (2023) − − 71.15± 0.47 54.92± 0.81 70.06± 1.72 55.26± 1.32

Zhao et al. (2023) − − 69.06± n/a 52.73± n/a − −
Zeng et al. (2024) − − 71.59± n/a 56.50± n/a − −

Long and Webber (2024) − − 71.19± n/a 52.91± n/a − −
Ours w/ MAE 47.17± 1.16 27.89± 1.21 43.88± 1.06 26.29± 1.71 45.53± 1.23 29.30± 1.49

Ours w/ CE 50.44± 0.81 34.38± 0.86 49.43± 1.47 33.11± 1.57 49.72± 1.45 33.21± 1.67

Table 5: Transfer learning results on different test splits of the PDTB 3.0 in single-label classification (weighted
F1-score). The Lin and Ji results were averaged across three different runs with random starts, while the Cross
results were averaged across all 12 folds. Values in bold show the best score for each level.

terpretation, we consider only single-label results.

7.1 Per-Sense Results

To identify disparities in performance between in-
dividual labels and to assess how well the model
is able to generalize across senses, we evaluate the
single-label predictions of our model at level-1 and
level-2. Table 6 shows the weighted F1-score of
each predicted sense in the test set of DiscoGeM
and in the different test sets of the PDTB 3.0.

As shown in Table 6, the per-sense performance
of the model on the DiscoGeM test set at both
level-1 and level-2 generally reflects the distribu-
tion of senses in the corpus (see Table 8 in Ap-
pendix A). Note that some certain senses — CON-
DITION, PURPOSE, EQUIVALENCE and MANNER

— never appear as the majority label of relation in
DiscoGeM and are therefore absent from the test
set (see Figure 2 and Table 9 in Appendix A). Un-
surprisingly, the model struggles to predict under-
represented senses such as SYNCHRONOUS, CON-
TRAST, SIMILARITY and SUBSTITUTION, which
appear infrequently in the training data. Address-
ing this imbalance, potentially through targeted
data augmentation, could improve generalization

on these under-represented senses. The confusion
matrices in Figures 3 and 4 in Appendix C pro-
vide further details into the per-sense performance
on the test set of DiscoGeM. The performance of
the model on the PDTB 3.0 test sets, also shown
in Table 6, is consistently lower than on Disco-
GeM, mirroring the trends reported in Table 4 and
Table 5. This performance gap is particularly pro-
nounced for certain senses, such as TEMPORAL

at level-1 and ASYNCHRONOUS and INSTANTIA-
TION at level-2. Conversely, the model performs
better at the level-2 CONTRAST sense. Since the
model was not trained on any PDTB 3.0 data, these
discrepancies can be explained by annotation in-
consistencies across both corpora as highlighted in
Section 4.3.

7.2 Sense Coherence across Levels

Table 7 shows the percentage of times a sense at
level-1 was predicted with a coherent sense at level-
2 (and vice-versa) in the test set of DiscoGeM and
in the different test sets of the PDTB 3.0. This
enables us to examine the extent to which the pre-
dictions of the model are consistent with the hierar-
chical sense structure defined in the PDTB 3.0.
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Level-1
DiscoGeM PDTB 3.0

Level-2
DiscoGeM PDTB 3.0

Test Lin Ji Cross Test Lin Ji Cross

TEMPORAL 61.27± 1.34 4.32± 1.58 15.75± 4.50 16.23± 4.86
SYNCHRONOUS 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

ASYNCHRONOUS 57.87± 0.84 6.01± 2.05 22.02± 4.42 23.16± 6.65

CONTINGENCY 58.67± 1.83 36.12± 7.17 34.27± 8.24 41.08± 2.87

CAUSE 65.36± 0.12 47.21± 1.93 46.40± 2.47 48.93± 2.07

CONDITION − 0.00± 0.00 0.00± 0.00 0.00± 0.00

PURPOSE − 0.00± 0.00 0.00± 0.00 0.00± 0.00

COMPARISON 39.31± 3.15 32.65± 1.69 37.67± 5.20 33.72± 2.34

CONCESSION 36.24± 4.55 29.70± 5.09 27.92± 1.75 19.46± 3.70

CONTRAST 4.13± 2.94 11.10± 7.92 12.70± 9.35 10.43± 6.61

SIMILARITY 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

EXPANSION 75.39± 1.15 64.44± 0.66 62.69± 0.38 63.48± 1.16

CONJUNCTION 52.56± 0.66 42.30± 1.26 39.91± 1.97 44.45± 3.04

EQUIVALENCE − 0.00± 0.00 0.00± 0.00 0.00± 0.00

INSTANTIATION 44.84± 0.18 12.15± 9.12 17.90± 12.72 15.62± 10.49

LEVEL-OF-DETAIL 46.85± 3.28 33.61± 2.90 29.32± 2.70 29.27± 3.06

MANNER − 0.00± 0.00 0.00± 0.00 0.00± 0.00

SUBSTITUTION 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 6: Individual per-sense results for each sense in level-1 and level-2 on the test set of DiscoGeM and on
different test splits of the PDTB 3.0 in single-label classification (weighted F1-score). Senses marked with "−"
were not present in the DiscoGeM test set. The DiscoGeM and the PDTB 3.0 Lin and Ji results were averaged
across three different runs with random starts, while the PDTB 3.0 Cross results were averaged across all 12 folds.

Level-1
DiscoGeM PDTB 3.0

Level-2
DiscoGeM PDTB 3.0

Test (%) Lin (%) Ji (%) Cross (%) Test (%) Lin (%) Ji (%) Cross (%)

TEMPORAL 92.94± 2.93 93.27± 6.31 90.93± 4.51 92.48± 4.93
SYNCHRONOUS n/a n/a n/a n/a

ASYNCHRONOUS 90.00± 1.44 82.74± 6.76 82.44± 11.34 88.30± 8.08

CONTINGENCY 98.91± 0.20 100.00± 0.00 99.74± 0.45 100.00± 0.00

CAUSE 62.37± 4.92 38.19± 6.45 38.42± 8.27 29.93± 1.32

CONDITION − n/a n/a n/a

PURPOSE − n/a n/a n/a

COMPARISON 86.31± 1.22 73.81± 13.21 68.09± 10.47 58.45± 4.12

CONCESSION 81.19± 2.83 89.15± 8.10 89.36± 8.98 97.93± 1.52

CONTRAST 91.67± 14.43 90.77± 10.09 90.77± 11.11 92.68± 8.19

SIMILARITY n/a n/a n/a n/a

EXPANSION 70.70± 1.26 37.91± 10.82 65.02± 12.30 53.01± 2.21

CONJUNCTION 97.61± 0.71 97.14± 0.03 3.20± 0.88 96.69± 0.96

EQUIVALENCE − n/a n/a n/a

INSTANTIATION 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

LEVEL-OF-DETAIL 99.82± 0.31 99.80± 0.35 100.00± 0.00 100.00± 0.00

MANNER − n/a n/a n/a

SUBSTITUTION n/a n/a n/a n/a

Table 7: Percentage of the instances that were classified with coherent senses at level-1 and level-2 on the test set
of DiscoGeM and on different test splits of the PDTB 3.0 in single-label classification. Senses marked with "−"
were not present in the DiscoGeM test set and senses marked with "n/a" were never predicted by the model. The
DiscoGeM and the PDTB 3.0 Lin and Ji results were averaged across three different runs with random starts, while
the PDTB 3.0 Cross results were averaged across all 12 folds.

As Table 7 shows, the CONTINGENCY sense
at level-1 is very often predicted with a coherent
level-2 sense (i.e., CAUSE, CONDITION or PUR-
POSE). Similarly, the level-2 senses INSTANTIA-
TION, LEVEL-OF-DETAIL and CONJUNCTION are
often predicted with a coherent level-1 sense. How-
ever, other senses, such as COMPARISON and EX-
PANSION at level-1 and CAUSE at level-2, are more
often predicted with a contradicting sense. A possi-
ble explanation might be that these senses are inher-
ently hard to distinguish and the model is biased to-
wards the most represented sense. For instance, the
level-2 senses CAUSE and ASYNCHRONOUS are
among the most often co-annotated pair of senses in
the DiscoGeM and CAUSE appears approximately
three times more often than ASYNCHRONOUS (see

Table 8 in Appendix A), the model is likely more bi-
ased towards CAUSE when distinguishing between
these two senses. One possible method to gener-
ate more coherent predictions across sense levels,
would be to share the predictions of lower-level
senses to help inform the prediction of higher-level
senses within the model.

8 Conclusion

In this work, we proposed a novel multi-label
framework for IDRR, addressing one of the most
complex challenges in discourse analysis. We
trained a multi-task classification model on the
DiscoGeM corpus to simultaneously learn multi-
label representations of discourse relations across
all three sense levels in the PDTB 3.0 framework.
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Our model can also be adapted to the traditional
single-label IDRR setting by selecting the sense
with the highest probability in the multi-label rep-
resentation. We conducted extensive experiments
to identify optimal model configurations and loss
functions in both settings. Our approach estab-
lishes a first benchmark on multi-label IDRR and
achieves SOTA results in single-label IDRR using
DiscoGeM. Finally, we evaluated our model on
the PDTB 3.0 corpus in the single-label setting,
presenting the first analysis of transfer learning be-
tween the DiscoGeM and PDTB 3.0 corpora for
IDRR. Our results show that zero-shot direct trans-
fer learning between both corpora still needs further
research.

Future work should explore the application
of data augmentation techniques, such as para-
phrasing, to determine whether augmenting under-
represented senses in the DiscoGeM could en-
hance the performance of the model on individual
senses. Additionally, future research should inves-
tigate whether cascading information from higher-
level to lower-level classification heads within the
model could improve the coherence of its pre-
dictions across sense levels. Lastly, it would be
worthwhile to examine whether a model trained to
learn multi-label representations of discourse rela-
tions in DiscoGeM could be further fine-tuned on
the PDTB 3.0 to achieve superior performance in
single-label IDRR using the PDTB 3.0 corpus.

9 Limitations

Despite the promising results, there are a few limi-
tations to our work. The first limitation of our work
comes from the fact that the CAUSE+BELIEF
sense was not annotated in the DiscoGeM corpus.
Therefore, we could not use the standard 14-label
set of second-level senses proposed for the PDTB
3.0 by Kim et al. (2020) and widely used in litera-
ture. Instead, we replaced it by the SIMILARITY
sense - the next most available sense in the Disco-
GeM corpus. Ideally, we would have replaced the
CAUSE+BELIEF sense with another sense under
the CONTINGENCY level-1 sense, but they were all
already considered.

Our choice of pre-trained language model to gen-
erate the embeddings for each pair of discourse ar-
guments also imposes a limitation to our work. Due
to computational and time limitations, we could not
explore the fine-tuning of larger models, such as
LLaMA 3 (Grattafiori et al., 2024), nor explore

prompting LLMs. However, in our other work
(Costa and Kosseim, 2025), we show that the use
of LLMs via direct prompting with few-shot learn-
ing for IDRR does not lead to better results. Finally,
we would like to acknowledge that the extensive ex-
perimental analysis conducted in this work would
not have been possible without access to a high-
performance computing facility - which entails a
non-negligible carbon footprint which we did not
monitor during any of our experiments.
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A Data Statistics

To standardize and ensure a fair comparison of re-
sults on IDRR, Kim et al. (2020) proposed a set of
14 level-2 senses in the PDTB 3.0 framework. How-
ever, the CAUSE+BELIEF sense in this set was not
annotated in DiscoGeM. Therefore, we adapted the
standard set to accommodate the existing level-2
senses in the corpus by replacing CAUSE+BELIEF

with SIMILARITY. We then removed all senses not
included in the standard set from the corpus and
normalized the distribution values over the remain-
ing senses following the L1 norm. This ensures
the sum of each distribution adds to 1 for each
instance while preserving the relative distance be-
tween senses. Table 8 shows the distribution of
senses across all levels in the original DiscoGeM
corpus and in our adapted set of 14 level-2 senses.
Each value represents the sum of the corresponding
sense across all instances. We then split 70% of the
corpus for training, 10% for validation and 20% for
testing. To ensure a balanced distribution, we kept
the same distribution of majority labels across all
data splits as shown in Figure 2 in Section 4.1. In
the single-label setting, we replaced the full multi-
label sense distribution of each discourse relation
by its majority sense. Table 9 shows the level-2
majority senses in the test set of DiscoGeM and
reference senses in the different test splits of the
PDTB 3.0 (see Section 4.2).

B Loss Functions

We evaluated the performance of different loss
functions on multi- and single-label IDRR. Consid-
ering ŷh as the predicted distribution of the clas-
sification head h (with h ∈ {1, 2, 3}), yh as the
corresponding target distribution, Ch the number
of senses at the sense level-h and N the number of
instances in each batch, we evaluated the following
loss functions:

• Cross-Entropy (CE)

lossh(ŷh, yh) = − 1
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Level-1
Sum

Level-2
Sum

Level-3
Sum

Original Adapted Original Adapted Original Adapted

TEMPORAL 584.3 619.5

SYNCHRONOUS 95.8 102.7 - - -

ASYNCHRONOUS 488.5 516.8
PRECEDENCE 448.1 474.2

SUCCESSION 40.5 42.7

CONTINGENCY 1, 745.1 1, 822.9

CAUSE 1, 740.2 1, 819.0

REASON 382.5 400.1

RESULT 1, 357.7 1, 418.9

NEGRESULT 0.0 0.0

CONDITION 1.2 1.2
ARG1-AS-COND 0.1 0.1

ARG2-AS-COND 1.1 1.1

NEG-CONDITION 1.1 0.0
ARG1-AS-NEGCOND 1.0 0.0

ARG2-AS-NEGCOND 0.1 0.0

PURPOSE 2.6 2.7
ARG1-AS-GOAL 1.7 1.7

ARG2-AS-GOAL 0.9 0.9

COMPARISON 831.5 878.0

CONCESSION 517.1 548.7
ARG1-AS-DENIER 169.3 179.9

ARG2-AS-DENIER 347.7 368.8

CONTRAST 202.4 213.4 - - -
SIMILARITY 112.0 116.0 - - -

EXPANSION 3, 034.6 3, 184.6

CONJUNCTION 1, 441.1 1, 518.0 - - -
DISJUNCTION 2.9 0.0 - - -
EQUIVALENCE 19.0 19.8 - - -

EXCEPTION 1.4 0.0
ARG1-AS-EXCEPTION 0.3 0.0

ARG2-AS-EXCEPTION 1.3 0.0

INSTANTIATION 388.8 403.8
ARG1-AS-INSTANCE 16.9 17.8

ARG2-AS-INSTANCE 371.9 386.0

LEVEL-OF-DETAIL 1, 137.0 1, 196.1
ARG1-AS-DETAIL 160.8 170.2

ARG2-AS-DETAIL 976.2 1, 025.9

MANNER 4.6 4.8
ARG1-AS-MANNER 1.3 1.3

ARG2-AS-MANNER 3.3 3.4

SUBSTITUTION 39.7 42.1
ARG1-AS-SUBSTITUTION 0.0 0.0

ARG2-AS-SUBSTITUTION 39.7 42.1

Table 8: Distribution of senses across all levels in the original DiscoGeM and in our adapted set of 14 level-2 senses
(see Section 4.1). Each value represents the sum of the corresponding sense across all instances.

Figure 2: Distribution of majority label senses across all splits of the DiscoGeM corpus (see Section 4.1).
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Level-1 Level-2
DiscoGeM PDTB 3.0

Test Lin Ji Cross

TEMPORAL
SYNCHRONOUS 13 19 43 42.85± 11.94

ASYNCHRONOUS 103 33 105 99.54± 24.95

CONTINGENCY

CAUSE 515 271 406 465.38± 77.28

CONDITION 0 10 15 16.31± 3.61

PURPOSE 0 46 89 110.08± 22.60

COMPARISON

CONCESSION 104 83 98 121.23± 22.87

CONTRAST 27 52 54 69.92± 18.99

SIMILARITY 10 1 2 2.23± 1.48

EXPANSION

CONJUNCTION 336 161 236 349.38± 86.25

EQUIVALENCE 0 24 30 27.54± 10.27

INSTANTIATION 53 70 124 118.62± 24.97

LEVEL-OF-DETAIL 202 194 208 263.69± 26.94

MANNER 0 4 17 17.92± 6.49

SUBSTITUTION 4 27 26 30.23± 8.28

Total 1, 367 995 1, 453 1, 734.92± 271.89

Table 9: Distribution of level-2 majority label senses across the test set of DiscoGeM (see Section 4.1) and the
different test splits of the PDTB 3.0 (see Section 4.2). The values in PDTB 3.0 Cross correspond to the averaged
distribution of majority label senses across all 12 test folds.

• Mean Absolute Error (MAE)

lossh(ŷh, yh) = 1
NCh

∑N
n=1

∑Ch

i=1 |ŷhn,i − yhn,i|
(2)

• Mean Squared Error (MSE)

lossh(ŷh, yh) = 1
NCh

∑N
n=1

∑Ch

i=1(ŷ
h
n,i − yhn,i)

2

(3)

• Huber Loss (Huber)

lossk(ŷh, yh) =
∑N

n=1

∑Ch

i=1


δhn,i

2

2NCh , if |δhn,i| < 1

2|δhn,i|−1

2NCh , otherwise
(4)

with

δhn,i = ŷhn,i − yhn,i (5)

The MAE and MSE losses in Equations 2 and 3,
respectively, aim to minimize the overall difference
between the predicted and target distributions by

penalizing errors across all possible labels. MAE
minimizes the average absolute differences, lead-
ing to predictions that are closer to the target distri-
bution in an averaged sense, while MSE places a
larger penalty on larger errors due to its quadratic
nature, which can result in a stronger emphasis
on outliers. The Huber loss in Equation 4 com-
bines the properties of MAE and MSE in function
of the delta parameter defined in Equation 5. In
other words, the Huber loss behaves like MAE
for smaller errors and like MSE for larger errors.
The results of experimenting with the MAE, MSE
and Huber losses were therefore relatively similar.
However, the MAE was slightly better and thus bet-
ter suited for multi-label IDRR as shown in Table 2
in Section 5.1. Table 10 shows the results of exper-
imenting with the MSE and Huber loss functions
in multi-label IDRR (JS distance) and in single-
label IDRR (weighted F1-score). Conversely, the
CE loss in Equation 1 focuses on maximizing the
probability of the label with the highest score in
the target distribution which makes it better suited
for single-label IDRR as shown in Table 2 in Sec-
tion 5.1.
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Model Loss
JS Distance ↘ (Multi-Label) F1-Score ↗ (Single-Label)

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3

BERT
MSE 0.319± 0.005 0.462± 0.002 0.544± 0.005 63.82± 0.83 48.68± 0.16 41.36± 1.55

Huber 0.318± 0.007 0.463± 0.001 0.542± 0.002 64.36± 0.48 49.45± 0.96 41.58± 1.08

DistilBERT
MSE 0.336± 0.007 0.481± 0.003 0.558± 0.003 60.10± 0.96 43.77± 0.86 37.66± 1.14

Huber 0.337± 0.002 0.479± 0.003 0.557± 0.006 60.41± 0.86 44.06± 0.64 37.29± 0.28

RoBERTa
MSE 0.308± 0.012 0.455± 0.001 0.534± 0.005 65.28± 0.36 53.94± 1.80 44.91± 1.31

Huber 0.305± 0.007 0.450± 0.004 0.539± 0.003 65.13± 0.60 53.39± 0.19 44.33± 0.64

DistilRoBERTa
MSE 0.313± 0.004 0.470± 0.005 0.555± 0.003 64.32± 1.99 50.48± 0.29 42.43± 0.22

Huber 0.318± 0.004 0.472± 0.001 0.561± 0.004 64.11± 0.72 50.46± 0.73 42.41± 0.30

Table 10: Results of experimenting with different pre-trained language models and different loss functions in
multi-label classification (JS distance) and in single-label classification (weighted F1-score). The results were
averaged across three different runs with random starts. Values in bold show the best score for each metric.

Figure 3: Confusion matrix for the individual per-class
results of each sense in level-1 on the test set of Disco-
GeM.

C Confusion Matrices

To provide further details into the per-sense perfor-
mance on the test set of DiscoGeM in Section 7.1,
we generated a confusion matrix at level-1 and
level-2 for the results of a single run on the test set
of DiscoGeM as shown in Figures 3 and 4, respec-
tively. The confusion matrix in Figure 3 shows that,
with the exception with COMPARISON, the most
predicted label always aligns with the correct la-
bel. Nevertheless, the confusion matrix also shows
that the model is more biased towards the most
represented senses level-1 senses EXPANSION and
CONTINGENCY (see Table 8 in Appendix A). At
the level-2, the confusion matrix in Table 4 shows
that the model is not able to predict less represented
senses in DiscoGeM (see Table 8 in Appendix A),
such as SYNCHRONOUS, SIMILARITY and SUB-
STITUTION. However, for the other senses, the
most predicted label often aligns with the correct
label.

Figure 4: Confusion matrix for the individual per-class
results of each sense in level-2 on the test set of Disco-
GeM.
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