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Abstract

Computational models of dialogue often strug-
gle to capture the nuanced structures of spon-
taneous conversation - specifically in polyadic,
real-world settings. We introduce a multi-
layered annotation protocol designed for the
GaMMA corpus, a Danish dataset of four-
person conversations recorded in both quiet and
noisy environments. The protocol targets key
interactional phenomena: Turn Construction
Units, backchannels, floor transfer attempts,
and repair sequences. Each annotation layer
is grounded in Conversation Analysis while
remaining machine-actionable, enabling align-
ment with multimodal data such as gaze and
motion. We report inter-annotator agreement
metrics across annotation tiers and discuss how
the protocol supports both fine-grained interac-
tion analysis and the training of context-aware
dialogue models.

1 Introduction

Multimodal conversation corpora are essential to
dialogue systems, yet few resources provide sys-
tematic annotation schemes tailored specifically
for spontaneous, polyadic interactions in real-world
noisy environments (Oertel et al., 2013). This paper
introduces an annotation taxonomy developed for
the GaMMA corpus (Dourado et al., 2025¢) con-
versations among four Danish speakers recorded
in both quiet and noisy conditions. Inspired by
foundational conversation analysis (CA) literature
(Selting, 2000) and multimodal annotation stan-
dards (Dideriksen et al., 2023), our protocol cap-
tures complex interactional phenomena relevant to
both CA and speech technology research.

Current computational methods, such as speech
diarization, voice activity detection (VAD), and
automatic speech recognition (ASR), lack ro-
bustness in detecting socially meaningful con-
versational structures like turn-construction units
(TCUs), backchannels, or failed floor transfers,

especially in polyadic conversations (Koutsom-
bogera and Vogel, 2012). Polyadic interactions
pose unique challenges, including managing over-
lapping speech and negotiating speaking turns dy-
namically (Skantze, 2021). We posit that structured
human-annotated conversational behavior can pro-
vide valuable training and evaluation layers for
context-sensitive computational models.

2 Related Work

Turn-taking detection and facilitation in speech
models often relies on silence thresholds, which
work in some cases but fail during mid-sentence
pauses or hesitant speech. For instance, OpenAl’s
advanced voice mode interrupts on the user’s
backchannel speech, limiting the potential for fluid,
conversational interaction. Ideally, systems should
maintain low latency after genuine utterance
completions without mistaking pauses for turn
ends (Inoue et al., 2024; Maas et al., 2018; Ok
et al., 2025). Machine learning can help address
this by learning to anticipate turn-taking using
cues such as syntax, semantics, and prosody
(Aldeneh et al., 2018; Maas et al., 2018; Ok et al.,
2025). Recent evaluations of ASR segmentation
highlight further limitations. Terpstra et al. (2023)
found minimal correspondence between automatic
and human-annotated utterance boundaries, with
OpenAl’'s ASR model, Whisper, frequently
over-segmenting and Google’s ASR merging
distinct turns or truncating mid-word. To address
this, Ok et al. (2025) propose an end-of-turn
detector (ETD), SpeculativeETD, that serves as
a classifier to distinguish between pauses and
end-of-turns, alongside the ETD Dataset. While it
is a valuable dataset of synthetic and real dyadic
conversations, labeled with speech-state transitions
(speaking unit, pause, gap), their annotations
focus solely on low-level audio segmentation, and
does not address interactional structures such as
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TCUs, backchannels, or floor transfer attempts
(FTA). Our protocol complements this work by
offering CA-informed, multilayered annotations
necessary to model conversational timing and turn
negotiation more robustly.

Another relevant observation is that Whisper’s
performance degrades on Danish, and even further
on dialectal Danish, but the Rgst model, fine-tuned
on the dialect and gender-balanced CoRal dataset,
improves accuracy to levels comparable with
English ASR (Radford et al., 2022; Madsen
et al., 2024). These findings may generalize to
the CA domain, with performance on tasks such
as ETD potentially affected by language- and
dialect-specific acoustic cues. Supporting this
intuition, Linke et al. (2025) show that modern
ASR systems perform significantly worse on
conversational speech than on read speech. These
limitations reflect a broader trend: ASR research
remains focused on solo, voice-assistant-style
interactions, with limited attention to polyadic,
spontaneous conversation. This research gap limits
the potential of speech dialogue systems in realistic
group interaction settings, such as collaborative
projects, where multiple speakers dynamically
share the floor.

3 Corpus Context and Goals

The GaMMA corpus (Dourado et al., 2025¢) con-
sists of 44 conversations, each lasting between 13
and 19 minutes, among four normal-hearing Dan-
ish speakers, recorded under controlled quiet and
noisy conditions. Audio and motion data were cap-
tured using head-mounted sensors (Dourado et al.,
2025b). Our objective was to develop a robust an-
notation protocol that could be reliably used by
annotators with a basic background in conversation
analysis, clearly labeling verbal interaction events
critical to understanding conversational dynamics.

4 Annotation Taxonomy

Our annotation protocol integrates insights from
two primary traditions: (1) Conversation Analysis,
particularly Selting (2000)’s concept of TCUs,
which emphasizes the emergent and negotiable
nature of conversational turns, and (2) multimodal
annotation frameworks such as Dideriksen et al.
(2023). Additional influence stems from ISO
24617-2 and MUMIN standards, although these

Code Label Description
TCU Turn Construction Unit Speaker-intended unit bound-
aries
type TCU Type Sublabel (bi- 1 =complete, 0 = incomplete
nary)
BC Backchannel (binary) “B” = listener feedback
(“mhm”)
FTA Floor Transfer Attempt 1 = success, 0 = failure
(binary)
Repair Conversational Repair ~ “SI” = self; “OI;Px” = other-
(typed) initiated
PD Parallel Dyads (qualita-  Two dyadic streams in polyadic
tive) talk

Table 1: Annotation codes and descriptions used in the
GaMMA annotation taxonomy.

often lack the flexibility or granularity needed for
detailed polyadic interaction analyses (Oertel et al.,
2013). See table 1 for the taxonomy. Consolidating
these concepts into one framework makes them
more accessible for computational modeling.

While nuanced categories are needed to capture
the complexity of natural conversation, an overly
fine-grained taxonomy can overwhelm annotators
and reduce consistency (Lee et al., 2021; Pokotylo,
2025). To mitigate this, several subcategories —
such as highly specific repair types — are deliber-
ately excluded.

4.1 Approach and Guidelines for Annotation

We adhered to best practices (Hahn et al., 2012;
Pokotylo, 2025; Lee et al., 2021), emphasizing the
importance of clear guidelines, annotator training,
and iterative refinement in complex annotation
tasks. The primary annotator, along with two
additional annotators, participated in workshops
and meetings focused on developing the annotation
codex. They annotated an initial pilot sample and
engaged in structured discussions to reconcile
discrepancies. This process was repeated over
several weeks, during which most disagreements
proved to be partial and typically stemmed from
different, yet equally valid, interpretations of
the same conversational sequences rather than
annotation errors, which led us to the annotation
logic presented in figure 1. To further support
reliability, the primary annotator maintained a
detailed log of challenging cases, allowing for
ongoing improvements to the annotation scheme
during the early stages of the project. After
completing the initial annotations, they revisited
and revised all conversations to ensure consistency
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in the application of the annotation framework
across the dataset. All uncertainties (typically
which interlocutor wins the floor in an FTA — see
fig. 2 for visualization of annotation procedure)
were segmented and commented in a ’Comments’
tier, and for a final revision, all uncertainties were
revisited with the video data, to ensure validity.
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Figure 1: The diagram illustrates the annotation logic
for each TCU, labeled as complete or incomplete, then
evaluated for backchannel status. If not a backchannel,
the annotator determines whether it is a floor transfer
attempt (successful or not) or a conversational repair,
which is further labeled as self- or other-initiated.

The main advantage of this protocol lies in its
ability to capture a wide range of conversational dy-
namics without requiring extensive linguistic exper-
tise or posing a steep learning curve for annotators.
It is designed to complement and extend compu-
tational approaches, aligning with automatically
extracted labels common in quantitative CA, such
as interpausal units, gaps, overlaps, and VAD-based
segmentations, while explicitly targeting social in-
teractional cues that such methods cannot reliably
detect (e.g., backchannels, floor transfer attempts,
or repairs). This accessibility and synergy come at
the cost of some linguistic precision, and certain
ambiguities may arise, particularly in cases where
interactional cues are context-dependent or lack

clear temporal boundaries.

Timeline
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Figure 2: Annotation visualization example showing
overlapping and sequential conversational events. This
represents a typical exchange with their appropriate
labels.

Figure 2 shows an annotated example from the
dataset (reduced to three interlocutors for visual-
ization purposes), illustrating how segments were
structured in ELAN. In this example, the first in-
terlocutor (P1) begins speaking and maintains the
floor despite P3’s unsuccessful attempt to take it.
P2 eventually succeeds in gaining the floor, repeat-
ing their utterance (Self-Initiated Repair) until P1
yields, even though P1 leaves their sentence incom-
plete, conveying only part of its intended meaning.
P2 completes their own sentence, and as soon as
they finish, P3 starts speaking and delivers their
turn without overlap (gap), resulting in an auto-
matic floor transfer. The example concludes with
P1 providing a backchannel that signals agreement
with P3’s statement.

5 Annotation Workflow and Reliability

Annotation guidelines were developed with input
from three annotators, of which two remained
through the full training process. Annotators inde-
pendently labeled a subset of the corpus to assess
inter-rater agreement (IAA). Following protocol fi-
nalization, the full dataset was annotated by a single
trained annotator. Agreement statistics are reported
for the two primary annotators. Annotations were
conducted using ELAN (Wittenburg et al., 2006)
and custom Matlab scripts for pre-alignment and
label consistency.

To accommodate the free segmentation style of
conversational annotation (e.g., TCUs), we com-
pute agreement using an overlap-weighted metric
inspired by Mezzich et al. (Mezzich et al., 1981).
This score reflects the proportion of overlapping
segment duration where labels match:
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Px TCUF1 TCUIoU TypeF1 Typex BCF1 BCx Repair

P1 0.803 0.562 0.977 0.644 0913 0.780 -
P2 0.895 0.567 0.933 0.499  0.711 0.645 1.000
P3 0.742 0.493 0.945 0.227 0931 0.865 -
P4 0.931 0.529 0.907 0455 0.772 0.724  1.000
Mean 0.843 0.538 0.940 0.456 0.832 0.754 1.000%

Table 2: Agreement metrics for the two main annotators
across participants. Metrics are grouped by annotation
tier. Repair values reflect only self-initiated (SI) repair
labels. *Mean Repair F1 includes only P2 and P4.

Zi,j O(s4,,58;) - 0(la;,1B;)
>.i;0(s4;:88))

Agreement y 5 =

()

Here, s4, and sp; are segments from annotators
A and B, O(sa,, sp;) denotes the duration of their
temporal overlap, and §(1 4,, ! Bj) equals 1 if labels
match, O otherwise.

To account for structural differences between
annotation tiers, we apply different agreement met-
rics: for segment-based tiers (e.g., TCUs), we re-
port the overlap agreement along with Intersection-
over-Union (IoU), using a +100 ms tolerance!. For
binary classification tiers (e.g., backchannels), we
compute accuracy, precision, recall, F1, and Co-
hen’s k. Repair labels are evaluated via overlap-
sensitive label matching and macro-F1.

Repair Agreement. Agreement on self-initiated
repair (SI) was consistently high across annota-
tors, with a macro F1 score of 1.0 and perfect label
alignment whenever SI was used. In contrast, other-
initiated repair (OL;Px) segments showed lower
agreement, with a few unmatched cases between
annotators, likely reflecting the difficulty of an-
notating loosely bounded multi-party repair initia-
tions.

Inter-annotator Agreement. Table 2 summa-
rizes agreement between the two main annotators
across all annotation tiers. Segment-level agree-
ment on TCUs was consistently high across partic-
ipants (mean F1 = 0.843, IoU = 0.538), indicating
reliable segmentation despite minor boundary vari-
ations. Backchannel annotations achieved strong
agreement (F1 = 0.832, k = 0.754), likely due
to their binary structure and alignment with clear

'We use £100 ms as a temporal tolerance for overlap-based
agreement. This reflects a conservative boundary relative to
the 200 ms modal gap observed between conversational turns
in natural dialogue (Roberts et al., 2015). The threshold serves
only to assess agreement, not to modify annotation boundaries.

acoustic cues. TCU Type labels, also binary but of-
ten tied to more subtle pragmatic cues, yielded sim-
ilarly high F1 (0.940) but lower & (0.456), suggest-
ing that perceived completion is somewhat more
subjective and potentially sensitive to annotator
interpretation and class imbalance.

Repair annotations were notably sparse: self-
initiated (SI) repairs occurred in only two of four
participants (P2 and P4), with perfect macro-F1
agreement (1.0). Other-initiated (OL;Px) repair seg-
ments were not abundant enough for inclusion in
aggregate metrics, but a dedicated overlap analysis
showed a high rate of mutual detection, with only
a few unmatched segments per annotator. These
findings suggest the protocol supports robust an-
notation of interactional behavior across multiple
conversational roles, while also identifying areas
(e.g., repair) that may require refinement or alter-
native modeling strategies.

6 Applications and Outlook

This structured taxonomy supports the study of
conversational phenomena such as overlap nego-
tiation, backchannel timing, and dynamic floor-
taking, offering actionable insights for both theoret-
ical analysis and computational modeling. The
GaMMA annotations provide rich training data
for machine learning models focused on detecting
TCUs, backchannels, and TRPs, thereby enhanc-
ing the context sensitivity of real-time dialogue
systems (Gravano and Hirschberg, 2009; Skantze,
2021).

Code CA Function ML Use Case

TCU Turn segmentation TRP prediction

type Turn completion Hold/yield modeling

B Listener feedback Backchannel detection

FTA Turn negotiation Floor modeling

Repair Trouble handling Repair/wake-word detection

PD Dyad formation Dyad-aware segmentation

Table 3: Conversation Analysis (CA) interpretations and
machine learning (ML) relevance for each annotation
code.

In particular, the protocol’s focus on polyadic,
spontaneous and real conversations enables
benchmarking of ETDs and backchannel detection
systems in more interactionally realistic conditions
than those found in dyadic corpora; It could also be
of interest to researchers investigating multimodal
conversational dynamics.
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Preliminary modeling efforts using the an-
notated corpus focus, and other modalities, on
predicting retention and floor transfer type (e.g.,
gap vs. overlap), highlighting its potential to sup-
port computational models of turn-taking. These
applications are part of ongoing, unpublished work.

Although the GaMMA dataset features only
Danish speakers, the annotation scheme itself is
grounded in general principles from conversation
analysis, drawing primarily on non-Danish
literature. The taxonomy focuses on interactional
constructs such as TCUs, backchannels, and
repairs, rather than prosodic or language-specific
features, which makes it broadly applicable across
languages. Native Danish annotators were re-
cruited to ensure sensitivity to subtle, “colloquial”
dynamics among participants, but the framework
is designed to be portable, ideally only requiring
minor adjustments to accommodate language- or
culture-specific turn-taking conventions, assuming
that annotators are conversationally fluent in the
target language and culturally attuned to local
norms and idiomatic usage.

7 Discussion

Throughout the annotation process, several interac-
tional patterns and challenges emerged. It became
evident that interlocutors often exhibit distinct
conversational habits — some frequently offer
verbal backchannels, while others remain largely
silent listeners. Much of their speech is easily
categorized using the available tiers, but certain
outliers require more nuance — as with utterances
like “So...”, which can variably continue a prior
message, serve as a stalling device, or signal turn
completion, and are not always disambiguated
by prosody alone. See in appendix ?? for ELAN
example. This variability presents difficulties for
transcription-based methods for speech dialogue
systems, which may struggle to accurately identify
backchannels or delineate TCUs. In the same
ELAN example, another issue arises when two
interlocutors speak simultaneously, resulting in an
ambiguous floor transfer. This ambiguity can often
be resolved using the surrounding conversational
context or, even more reliably, by consulting video
data. However, in some cases, it still requires
subjective interpretation when the nuances are

too subtle. Additionally, speech overlap tended
to decrease during periods of parallel dyadic
interaction within the polyadic setting, suggesting
that this structure may be useful for training
models in managing multi-party turn-taking.

Another consideration is that interlocutors in
varying degrees produce utterances that are syn-
tactically incomplete yet pragmatically sufficient,
which should pose challenges to the types of ASR
solutions that rely on transcription-based methods,
and this underlines the importance of speech
systems trained specifically for ETD tasks.

To capture more nuances, we propose several
avenues for future continuation of annotation work
on the GaMMA (or similar) dataset, based on the
experience of the main annotator. These include
marking short floor changes where an interjection
does not fully claim the floor but is acknowledged
through micro-pauses or gaze; annotating overlap-
ping speech in which speakers simultaneously pro-
duce similar or identical content, effectively divid-
ing the floor; identifying explicit floor control de-
vices (e.g., “can I just say—"); and labeling collab-
oratively constructed TCUs, where utterances are
jointly completed by interlocutors. Such additions
would enrich the representation of conversational
structure, particularly in complex multi-speaker en-
vironments.

References

Zakaria Aldeneh, Dimitrios Dimitriadis, and
Emily Mower Provost. 2018. Improving end-
of-turn detection in spoken dialogues by detecting
speaker intentions as a secondary task. Technical
report.

C.D. Dideriksen, P. Lassen, and M. Broth. 2023. Anno-
tation of bodily—visual conduct in multiparty interac-
tion: A model for complex multimodal coordination.
Language and Dialogue, 13(1):36-70.

Mark Dourado, Spangsberg Lorenzen Frej, Jesper Ude-
sen, Henrik Gert Hassager, and Stefania Serafin.
2025a. Multi-layered annotations for polyadic con-
versation: Interactional labels from the gamma cor-
pus. Dataset associated with the SIGDIAL 2025 pa-
per. DOL: https://doi.org/10.5061/dryad.p8cz8wb38.

Mark Dourado, Jesper Udesen, Henrik Gert Hassager,
and Stefania Serafin. 2025b. The gamma corpus
of danish polyadic conversations with gaze, speech,
and motion data in quiet and noise. Manuscript in
revision at Scientific Data.

Mark Dourado, Jesper Udesen, Henrik Gert Has-
sager, and Stefania Serafin. 2025¢c. GaMMA: Gaze,

250


https://github.com/cgpotts/swda
https://github.com/cgpotts/swda
https://github.com/cgpotts/swda
https://doi.org/10.5061/dryad.p8cz8wb38
https://doi.org/10.5061/dryad.p8cz8wb38
https://doi.org/10.5061/dryad.p8cz8wb38
https://doi.org/10.5061/dryad.r7sqv9snc

Motion and Multi-talker Audio. Dataset. DOI:
https://doi.org/10.5061/dryad.r7sqv9snc.

Agustin Gravano and Julia Hirschberg. 2009.
Backchannel-inviting cues in task-oriented dialogue.
In Proceedings of the SIGDIAL 2009 Conference,
pages 253-261.

Udo Hahn, Elena Beisswanger, Ekaterina Buyko, Erik
Faessler, Jenny Traumiiller, Traum™ Traumidiller, Su-
sann Schroder, and Kerstin Hornbostel. 2012. Iter-
ative refinement and quality checking of annotation
guidelines-how to deal effectively with semantically
sloppy named entity types, such as pathological phe-
nomena. Technical report.

Koji Inoue, Bing’er Jiang, Erik Ekstedt, Tatsuya Kawa-
hara, and Gabriel Skantze. 2024. Real-time and con-
tinuous turn-taking prediction using voice activity
projection.

Maria Koutsombogera and Carl Vogel. 2012. Backchan-
nels revisited from a multimodal perspective. In
Proceedings of the Interdisciplinary Workshop on
Feedback Behaviors in Dialog, pages 43—46.

Ji-Ung Lee, Jan-Christoph Klie, and Iryna Gurevych.
2021. Annotation curricula to implicitly train non-
expert annotators.

Julian Linke, Bernhard C Geiger, Gernot Kubin, and
Barbara Schuppler. 2025. What’s so complex about
conversational speech? a comparison of hmm-based
and transformer-based asr architectures. Computer
Speech Language, 90:101738.

Roland Maas, Ariya Rastrow, Chengyuan Ma, Guitang
Lan, Kyle Goehner, Gautam Tiwari, Shaun Joseph,
and Bjorn Hoffmeister. 2018. Combining acous-
tic embeddings and decoding features for end-of-
utterance detection in real-time far-field speech recog-
nition systems. Technical report.

Simon Leminen Madsen, Anders Jess Pedersen,
Anna Katrine van Zee, Dan Saattrup Nielsen,
Sif Bernstorff Lehmann, and Torben Blach. 2024.
Coral: A diverse danish asr dataset covering dialects,
accents, genders, and age groups.

Juan E Mezzich, Helena C Kraemer, David R Worthing-
ton, and George A Coffman. 1981. Assessment of
agreement among several raters formulating multiple
diagnoses. Psychological Medicine, 11(1):67-78.

Catharine Oertel, Fred Cummins, Jens Edlund, Nick
Campbell, and Petra Wagner. 2013. D64: A corpus
of richly recorded conversational interaction. Journal
on Multimodal User Interfaces, 7:19-28.

Hyunjong Ok, Suho Yoo, and Jaeho Lee. 2025. Specu-
lative end-turn detector for efficient speech chatbot
assistant.

Paul Pokotylo. 2025. Measuring inter-annotator agree-
ment: Building trustworthy datasets.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint.

251

Sedn G. Roberts, Francisco Torreira, and Stephen C.
Levinson. 2015. The effects of processing and se-
quence organization on the timing of turn taking: A
corpus study. Frontiers in Psychology, 6.

Margret Selting. 2000. The construction of units in
conversational talk. Language in Society, 29(4):477—
517.

Gabriel Skantze. 2021. Turn-taking in conversational
systems and human-robot interaction. Computer
Speech & Language, 67:101178.

Corbyn Terpstra, Ibrahim Khebour, Mariah Brad-
ford, Brett Wisniewski, Nikhil Krishnaswamy, and
Nathaniel Blanchard. 2023. How good is automatic
segmentation as a multimodal discourse annotation
aid? Technical report.

Peter Wittenburg, Hennie Brugman, Albert Russel, Alex
Klassmann, and Han Sloetjes. 2006. Elan: a pro-
fessional framework for multimodality research. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC), pages
1556-1559.

Appendix & Supplementary
Data Availability

All annotations produced for this work, cover-
ing the entirety of the 9+ hours of GaMMA
corpus conversations, will be made freely
available at https://doi.org/10.5061/dryad.
p8cz8wb38 (Dourado et al., 2025a). This includes
ELAN templates, audio, and full annotation ex-
ports. The GaMMA corpus itself is under embargo
and will be released through Dryad https://doi.
org/10.5061/dryad.r7sqv9snc (Dourado et al.,
2025¢) when the accompanying paper is published
(Dourado et al., 2025b)


https://doi.org/10.5061/dryad.r7sqv9snc
http://www.cancer.gov/cancertopics/
http://www.cancer.gov/cancertopics/
http://www.cancer.gov/cancertopics/
http://www.cancer.gov/cancertopics/
http://www.cancer.gov/cancertopics/
http://arxiv.org/abs/2401.04868
http://arxiv.org/abs/2401.04868
http://arxiv.org/abs/2401.04868
http://arxiv.org/abs/2106.02382
http://arxiv.org/abs/2106.02382
https://doi.org/10.1016/j.csl.2024.101738
https://doi.org/10.1016/j.csl.2024.101738
https://doi.org/10.1016/j.csl.2024.101738
https://hf.co/datasets/alexandrainst/coral
https://hf.co/datasets/alexandrainst/coral
http://arxiv.org/abs/2503.23439
http://arxiv.org/abs/2503.23439
http://arxiv.org/abs/2503.23439
https://doi.org/10.48550/ARXIV.2212.04356
https://doi.org/10.48550/ARXIV.2212.04356
https://doi.org/10.3389/fpsyg.2015.00509
https://doi.org/10.3389/fpsyg.2015.00509
https://doi.org/10.3389/fpsyg.2015.00509
https://doi.org/10.5061/dryad.p8cz8wb38
https://doi.org/10.5061/dryad.p8cz8wb38
https://doi.org/10.5061/dryad.r7sqv9snc
https://doi.org/10.5061/dryad.r7sqv9snc

ES

Grp01_P4_

B o

............... LR
00:01:56.500 00:01:57.000

GG
00:01:57.500

00:01:58.000

I

P1TCU

1187]

P1 Backchannel
58]

P1 Floor Transfer A
58]

P1 Conversational
(10)

P2TCU

110]

P2 Backchannel
27)

P2 Floor Transfer A
7]

P2 Conversational
]

P3TCU

1]

P3 Backchannel
58]

P3 Floor Transfer A
5]

P3 Conversational
ul

P4 TCU
—

P4 Backchannel
o

P4 Floor Transfer A
27]

P4 Conversational
ol

Dual start

0]

GDPR Sensitive

F el D

Comments
2]

00:01:54.000

00:01:54.500

00:01:55.000

o

......... R LR LT LR e
00:01:56.500 00:01:57.000

1
|

00:01:58.000

Appendix Al: Example from annotated conversation in ELAN, the software used to annotate the dataset. The
backchannel utterance by P4, marked in blue, contains the sentiment “So...”, which is ambiguous and cannot be
disambiguated using gaze or other available data. The TCU of P1 and P3 here occur at the same time, but P1 gains
the floor, and completes their utterance as P2 overtakes the floor.

Px Pair Mezzich  Tol. Prec.  Rec. F1 IoU BCF1 BCk TypeF1 Typex RepairF1 SICount OI-MD OI-FJ

Pl MD-FJ 1.000 0.094 0957 0.692 0803 0562 0913  0.780 0.977 0.644 - - 0 0
MD-MK 1.000 0.718 0913 0926 0919 0.728 0.902  0.781 0.960 0.596 - - - -
FJI-MK 1.000 0.092 0.687 0962 0.802 0.546 0.932  0.854 0.966 0.557 - - - -

P2 MD-FJ 1.000 0.150 0.996 0.813 0.895 0.567 0.711  0.645 0.933 0.499 1.000 2 0 1
MD-MK 1.000 0.598 0.866 0.955 0909 0.560 0.727  0.669 0.922 0.558 - - - -
FJI-MK 1.000 0.134 0.734 0.992 0.844 0.398 0.829  0.788 0.924 0.390 -

P3 MD-FJ 1.000 0.032 0.892 0.635 0.742 0.493 0931  0.865 0.945 0.227 - - 0 0
MD-MK 1.000 0.629 0.872 0935 0902 0.710 0.850  0.758 0.891 0.061 - - - -
FJI-MK 1.000 0.033 0592 0892 0.712 0438 0.864 0.739 0.966 0.378 - - - -

P4  MD-FJ 1.000 0.177 0976 0.891 0931 0529 0772  0.724 0.907 0.455 1.000 4 2 1
MD-MK 1.000 0.531 0.938 0963 0950 0.589 0.825 0.787 0.864 0.438 - - - -
FJI-MK 1.000 0.200 0.874 0983 0925 0456 0.909 0.888 0.866 0.340 - - - -

Appendix A2: Expanded agreement metrics across all participants (P1-P4) and annotator pairs (MD, FJ and MK).
”Tol.” = Tolerance-based agreement (100 ms), BC = Backchannel, Type = TCU Type, "OI-MD/FJ”” = number of
unmatched other-initiated repair segments for each annotator. Dashes indicate metric not computed due to absence

of labels or data.
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Group Condition TCU Count Avg TCU Len. TCU Comp. % BC Count AvgBC Len. BC/FC Ratio Repair Count SI % OI % TalkShare SD TalkShare Max %

01 Quiet 548 1.58 90.5 232 0.425 0.114 14 93 7 135 40.2
01 55 422 1.98 84.6 147 0.403 0.071 23 100 0 10.8 39.6
01 65 572 1.70 90.4 206 0.429 0.091 39 92 8 2.1 27.5
01 iLombard 486 1.85 85.0 148 0.323 0.053 39 97 3 9.7 333
02 Quiet 458 1.90 88.0 184 0.449 0.095 21 95 5 14.6 42.7
02 55 661 1.44 92.1 255 0.519 0.139 4 100 0 10.6 39.7
02 65 497 1.78 84.7 198 0.459 0.103 18 94 0 8.8 34.0
02 iLombard 601 1.81 88.7 253 0.515 0.120 18 94 6 119 384
03 Quiet 668 1.25 93.1 298 0.371 0.132 19 95 5 10.8 37.5
03 55 823 1.30 93.1 321 0.357 0.107 29 97 3 35 28.6
03 65 546 1.40 91.4 217 0.411 0.117 17 65 2 15.1 39.7
03 iLombard 554 1.28 95.3 238 0.362 0.121 8 63 38 9.0 35.1
04 Quiet 459 1.85 87.6 202 0.433 0.090 19 79 21 12.0 38.2
04 55 486 1.50 88.1 213 0.409 0.094 19 89 11 10.0 33.7
04 65 507 1.64 89.4 235 0.419 0.101 15 93 7 119 36.7
04 iLombard 468 1.56 89.3 206 0.404 0.099 18 89 11 8.1 31.6
05 Quiet 552 1.59 89.5 264 0.397 0.108 17 88 12 8.5 335
05 55 594 1.51 88.2 252 0.410 0.104 25 88 12 7.6 31.8
05 65 539 1.68 874 233 0.422 0.109 20 90 10 79 334
05 iLombard 513 1.65 86.8 240 0.400 0.106 22 86 14 9.2 352
06 Quiet 509 1.72 88.6 198 0.405 0.096 15 93 7 10.4 36.9
06 55 538 1.58 87.8 213 0.397 0.099 20 90 10 10.1 37.0
06 65 490 1.60 88.9 195 0.416 0.098 17 88 12 11.4 36.3
06 iLombard 509 1.62 87.7 201 0.408 0.097 21 90 10 10.7 37.6
07 Quiet 576 1.64 89.1 242 0.419 0.102 18 94 6 9.8 342
07 55 611 1.61 89.0 250 0.422 0.103 19 89 11 9.0 349
07 65 598 1.60 88.7 246 0.417 0.104 16 88 12 9.1 34.0
07 iLombard 573 1.62 89.2 244 0.420 0.102 20 90 10 8.7 35.0
08 Quiet 487 1.71 86.3 201 0.421 0.101 22 91 9 9.6 32.8
08 55 509 1.66 85.9 210 0.418 0.102 21 90 10 10.2 33.1
08 65 502 1.68 86.1 215 0.416 0.103 19 89 11 10.6 33.0
08 iLombard 498 1.67 86.0 213 0.419 0.102 20 88 12 9.7 335
09 Quiet 512 1.69 87.8 220 0.413 0.099 23 91 9 8.9 33.7
09 55 530 1.65 88.0 224 0.410 0.100 21 89 11 9.3 34.1
09 65 544 1.63 88.2 228 0.408 0.101 22 88 12 9.6 34.0
09 iLombard 526 1.66 88.1 226 0.412 0.100 21 87 13 9.1 345
10 Quiet 490 1.73 85.5 205 0.417 0.100 24 92 8 10.0 33.0
10 55 505 1.69 85.9 208 0.415 0.101 22 91 9 9.8 332
10 65 511 1.68 86.1 211 0.413 0.102 23 90 10 10.1 33.1
10 iLombard 507 1.67 86.0 209 0.414 0.101 21 89 11 10.2 334
11 Quiet 508 1.68 86.5 210 0.416 0.101 22 90 10 10.3 33.6
11 55 512 1.67 86.4 212 0.414 0.101 21 89 11 10.4 335
11 65 506 1.69 86.6 214 0.412 0.102 20 88 12 10.2 33.7
11 iLombard 503 1.68 86.7 213 0.413 0.101 21 87 13 10.1 338

Appendix A3: Aggregated descriptive statistics for each conversation. Metrics include total counts and durations
of turn-construction units (TCU) and backchannels (BC) in seconds, BC and front-channel (FC) ratios, TCU
completion rate, repair types (SI = Self-initiated, OI = Other-initiated), and inter-participant talking-time (TalkShare)
variability.
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