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Abstract

Most conventional spoken dialogue systems de-
termine when to respond based on the elapsed
time of silence following user speech utter-
ances. This approach often results in failures
of turn-taking, disrupting smooth communi-
cations with users. This study addresses the
detection of when it is acceptable for the dia-
logue system to start speaking. Specifically, we
aim to detect transition relevant points (TRPs)
rather than predict whether the dialogue partic-
ipants will actually start speaking. To achieve
this, we employ a self-supervised speech rep-
resentation using contrastive predictive coding
and a self-attention transformer. The proposed
model, TRPDformer, was trained and evaluated
on the corpus of everyday Japanese conversa-
tion. TRPDformer outperformed a baseline
model based on the elapsed time of silence.
Furthermore, third-party listeners rated the tim-
ing of system responses determined using the
proposed model as superior to that of the base-
line in a preference test.

1 Introduction

Turn-taking is a fundamental aspect of speech com-
munication, yet spoken dialogue systems often fail
to take turns at the right moments. This awkward
behavior arises from conventional systems that de-
termine when to speak based solely on the elapsed
time of silence after user utterances. Consequently,
smooth communications between humans and ma-
chines become challenging (Skantze, 2021).

In this study, we aim to detect when a spoken di-
alogue system is permitted to start speaking, in con-
trast to conventional models that predict whether
speaker shift will actually occur. Specifically, we
investigate the transition relevant point (TRP) de-
tection during a user utterance. To achieve this,
we employ a self-supervised speech representa-
tion and a self-attention transformer. The proposed
model receives a single-channel audio stream of
user speech and infers whether it is preferable for

the spoken dialogue system to take a turn at each
time frame.

Most prior studies on turn-taking focused on
batch inference conducted at the end of speech.
Additionally, previous research commonly relied
on linguistic features extracted from transcriptions.
The proposed model is notable for performing con-
secutive inference without relying on linguistic fea-
tures. We avoid transcription to eliminate any ad-
ditional latency introduced by automatic speech
recognition (ASR) and perform consecutive infer-
ence in the frame unit. These characteristics differ-
entiate our approach from earlier studies on turn-
taking (Skantze, 2017; Liu et al., 2017; Masumura
et al., 2017, 2018; Roddy et al., 2018; Hara et al.,
2018, 2019; Ekstedt and Skantze, 2020; Gervits
et al., 2020; Yang et al., 2022; Threlkeld et al.,
2022; Sakuma et al., 2023).

Notably, TRP detection differs from voice activ-
ity projection (VAP) (Ekstedt and Skantze, 2022a,b;
Ekstedt et al., 2023). TRP detection infers whether
a listener is allowed to start speaking without spec-
ifying who will actually take the turn. Conversely,
VAP predicts whether each interlocutor will speak
next, thereby identifying the likely next speaker.
Hence, TRP detection and VAP address distinct
tasks. Importantly, a TRP does not necessarily
guarantee a speaker change; the present speaker
may keep talking, or a listener may simply pro-
duce a backchannel response. Moreover, VAP does
not distinguish whether the subsequent speech is
a backchannel or turn. For the effective use of a
VAP model for turn-taking, another model is re-
quired to predict whether it is appropriate to make
a backchannel or take a turn. From the data per-
spective, a VAP model learns from whether each
interlocutor actually started speaking in the conver-
sational speech data, rendering it self-supervised.
Conversely, a TRP detection model requires spoken
dialogue data with TRP labels for training. Sim-
ilar to VAP, most previous studies on turn-taking
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Figure 1: Structure of TCU. A TCU comprises IPUs
and intermediate pauses. The end of an IPU is either a
TRP or a non-TRP. t denotes the time.

focused on predicting who would actually take the
turn (Skantze, 2017; Liu et al., 2017; Masumura
et al., 2017, 2018; Roddy et al., 2018; Hara et al.,
2018; Ekstedt and Skantze, 2020; Yang et al., 2022;
Sakuma et al., 2023).

Prior studies have used the term "TRP" to refer
to different tasks. Threlkeld et al. (2022) analyzed
the effect of pause duration on the probability of
a speaker shift, assuming that the temporal posi-
tion of the turn end is known. Gervits et al. (2020)
focused on predicting the completion point of the
current speech utterance from its partial transcrip-
tion. Hara et al. (2019) used a TRP detection model
as the first step in a two-step approach to actual
turn-taking prediction. The definition of TRPs in
(Hara et al., 2019) aligns with ours; however, their
inference was performed in batch and relied on
linguistic features, in contrast to our approach.

2 Method

We introduce fundamental elements and formalize
TRP detection. An inter-pausal unit (IPU) is a con-
tinuous speech utterance without an intermediate
pause. Furthermore, a pause (i.e., a period of time
during which the speaker is not talking) may occur
between adjacent IPUs. IPUs and pauses formu-
late a turn construction unit (TCU), i.e., a unit of
speech that makes up a turn in the conversation, as
illustrated in Figure 1. A TRP is located at the end
of a TCU, where a turn shift (i.e., speaker change)
is acceptable. Conversely, the end of an IPU in the
middle of a TCU is referred to as a non-TRP.

2.1 Transition relevance score

As a supervisory target variable, we introduce
a transition relevance score r(t) that represents
whether a spoken dialogue system is allowed to
take a turn at a time frame t:

r(t) =

{

1 when the system may take a turn

0 otherwise.
(1)

IPU

Predictive
Just-in-time
Retrospective

TRP

non-TRP

Figure 2: Transition relevance score r(t). The model is
trained to detect a TRP with a latency L relative to the
IPU tail. The loss function is calculated within the time
interval T before and after the IPU tail.

A TRP detection model is trained to predict r(t)
from an input audio stream in certain time inter-
vals. Therefore, the TRP detection model should
be causal. The predicted scores range from 0.0 to
1.0 (i.e., r(t) ∈ [0, 1]).

In this study, we explore three types of models:
predictive, just-in-time, and retrospective. Predic-
tive and retrospective models are trained to detect
TRPs earlier and later than the actual point, respec-
tively. The target score is shifted by L in time, as
illustrated in Figure 2. L is referred to as latency.
A positive value indicates a retrospective model,
while a negative value signifies a predictive model.
L = 0 represents a just-in-time model.

3 Model

This study proposes a TRP detection model with
a self-attention transformer (TRPDformer). TR-
PDformer consists of a pre-trained contrastive pre-
dictive coding (CPC) model (Rivière et al., 2020),
a causal self-attention transformer, and a detection
head, as illustrated in Figure 3. The CPC model
yields speech representations at a sampling rate of
100 Hz. A subsequent convolutional layer down-
samples the representations to 20 Hz before passing
them to the transformer. A causal attention mask is
applied in the transformer. The detection head is a
time-distributed dense layer with a logit function.
The entire model yields the transition relevance
score in intervals of 20 ms. The cross-entropy loss
is employed for training.

This model structure is identical to that of the
stereo VAP model, except for the inevitable modifi-
cations that arise from changes in inputs and out-
puts. Specifically, the input of the proposed model
is single-channel audio, whereas the VAP model
receives stereo audio. Consequently, the proposed
models do not include cross-attention transformers
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Figure 3: Model structure

between channels. The head is altered to yield a
single score, namely r(t), instead of stereo voice
activities. Notably, the proposed and VAP models
address different tasks: TRP detection and voice ac-
tivity prediction, respectively. Therefore, the VAP
model is not well-suited for TRP detection (see
also Section 4.2).

We employ a model based on voice activity de-
tection (VAD) as a baseline. This model detects
a TRP when the pause duration exceeds a certain
period of time after the IPU ends.

4 Data

This study utilizes a large-scale spontaneous con-
versational speech corpus known as the corpus
of everyday Japanese conversation (CEJC) (Koiso
et al., 2022). CEJC consists of 200 hours of speech
data recorded during daily conversations involving
862 distinct speakers. The annotations contain long
utterance units (LUUs).

An LUU is a basic unit for spoken dialogue that
is determined considering syntactic, pragmatic, and
prosodic aspects (Japanese Discourse Research Ini-
tiative, 2017). Notably, an LUU coincides with a
TCU in most cases. In fact, turn-taking frequently
occurs at LUU boundaries (Den et al., 2010). Even
in the case where a turn-switch does not occur,
the LUU endpoint can mostly be considered as a
TRP (Enomoto et al., 2020). Therefore, consider-
ing the completion points of LUUs as surrogate
labels for TRPs is reasonably valid. This approach
is widely accepted in prior studies (Koiso and Den,
2011; Ishimoto et al., 2011; Ishimoto and Enomoto,
2017; Enomoto et al., 2020). A few exceptions to
this identification of LUUs and TCUs were noted
by Hara et al. (2019); Enomoto et al. (2020).

A key distinction between LUUs and TCUs lies
in their use of backchannels. An LUU can function
as a backchannel and therefore may not constitute
a full turn. However, the LUU labels provide ad-
vantages for incorporating a TRP detection model

Table 1: Statistics of IPU transitions

Speaker Overlap TRP non-TRP

Shift 39,827 16,084
Shift ✓ 53,556 8,569
Hold 25,734 25,948

into spoken dialogue systems; this is because the
systems need to determine when to speak, regard-
less of whether the current user’s speech is a turn
or a backchannel. Hence, we treat the end of an
LUU as a point to be detected and refer to it as a
"TRP."

4.1 Preprocessing

For preprocessing, we applied speech enhancement
to the CEJC data to suppress background noises
and reverberations. Additionally, we filtered the
data as follows: (1) Two-party dialogues were se-
lected; (2) LUUs that were included in another
LUU were excluded; (3) LUUs involving a non-
speech sound, such as a laugh, breath, and cough,
were eliminated; (5) For each IPU, the segment
that overlapped with the subsequent IPU at the tail
was cut off if it existed; (6) IPUs with a duration
shorter than 500 ms were excluded. Consequently,
we obtained 169,718 IPUs.

4.2 Statistics

Table 1 lists the statistics of the selected IPUs. By
definition, an IPU with a tail overlap is always
accompanied by a speaker shift. This statistical
analysis indicates that the prediction of speaker
change distinctly differs from the TRP detection.
Even perfect speaker change prediction (i.e., per-
fect VAP) can achieve a recall of 0.60 and precision
of 0.71 in the TRP detection task when focusing on
non-overlap speech in CEJC. Notably, this theoret-
ical performance is lower than that of the proposed
model in our experiments (Fig. 6). The difference
lies in the fact that a speaker shift does not neces-
sarily signify a turn shift, as the subsequent IPU
could be a backchannel. Furthermore, a TRP does
not necessarily indicate a speaker shift, because the
current speaker may keep talking.

5 Experiments

We conducted model training and evaluation in IPU
units. For each IPU, all precedent IPUs within the
same LUU were included in the data unit as the
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Figure 4: Units of data. Three data units are extracted
from an LUU encompassing three IPUs. For each data
unit, the time interval of T before and after the tail of
the last IPU is considered by the loss function.
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Figure 5: Reception period. A fixed reception period
ends when a certain interval S elapses after the IPU
offset, whereas a variable reception period ends at the
subsequent IPU onset.

past context, as illustrated in Figure 4. The IPU-
based data units were divided into three groups
for training, validation, and testing with a ratio of
90:5:5. Consequently, we obtained 152,647, 8,545,
and 8,526 data units, respectively.

5.1 Training method

To alleviate the imbalance of the score values, only
the intervals of T before and after the end of each
IPU are considered in the loss function, as illus-
trated in Figure 2 and 4. Note that the past context
available for the model was not limited to this in-
terval.

The embedding dimension of the self-attention
was set to 256; the number of heads was set to
four; the dropout probability was set to 0.1. In
our experiments, we set T=1000 ms and examined
different latencies, namely L=−240, 0, 240 ms.

5.2 Test method

The correctness of model inferences was deter-
mined based on whether a TRP was detected within
a reception period. A reception period begins at the
IPU onset, as illustrated in Figure 5. A fixed recep-
tion period ends when a certain interval S elapses
after the IPU offset, disregarding any subsequent
IPU. A variable reception period ends at the onset
of the subsequent IPU. The IPUs with a tail overlap
were excluded at the test time.
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Recall
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Figure 6: Precision-recall curve

5.3 Performance evaluation

Figure 6 presents the precision-recall curves and
area under the curve (AUC) in the variable recep-
tion period condition. The proposed models (i.e.,
TRPDformers) outperformed the baseline model
(i.e., the VAD-based model). The balance between
the precision and recall can be adjusted by chang-
ing thresholds of the pause period and score for the
VAD-based and proposed models, respectively. In
the variable reception period condition, the models
were required to detect a TRP (if applicable) by the
onset of the subsequent IPU; hence, the predictive
model was slightly advantageous. In the fixed re-
ception period condition, all TRPDformer models
achieved almost the same performance, namely an
AUC of 0.83.

For the validation set, the retrospective, just-in-
time, and predictive TRPDformers achieved AUC
scores of 0.763, 0.807, and 0.801, respectively.

5.4 Detection delay analysis

Delays in the TRP detection by the proposed mod-
els were analyzed. This analysis was performed
in the fixed reception field condition (S=1000 ms)
to eliminate the influence of the pause period dis-
tribution in CEJC. Figure 7 depicts the detection
delay distribution (independent of the detection cor-
rectness) with respect to the present IPU offset for
score thresholds of 0.5 and 0.75. A negative value
of the delay represents that the model detected a
TRP earlier than the IPU tail.

Notably, the TRP detection delays increased as
the score threshold was increased. This finding
indicates that we can modify the system behavior
regarding the response delay by adjusting the score
threshold.

5.5 Preference test

We conducted a preference test to confirm that the
differences between the VAD-based model and the
proposed model were meaningful for humans. The
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Figure 7: Distribution of the detection delay, where rth

denotes the score threshold.

test was designed to simulate a human interact-
ing with a spoken dialogue system, where the user
speech is real, while the system response is synthe-
sized. Subjects were presented with a pair of short
spoken dialogues: one attributed to the VAD-based
model and the other to the proposed model. Each
dialogue comprised two or three LUUs. The first
and second LUUs were sampled from CEJC and
were supposed to be user utterances. The first LUU
was common between a pair. The second LUU was
inserted only when the VAD-based model detected
no TRP in the first LUU. The last LUU was a sys-
tem response synthesized as follows: (1) The text
was generated using Gemini 2.0 Flash by providing
the dialogue history; (2) The speech was synthe-
sized using Google Text-to-Speech by providing
the generated text. The VAD-based and just-in-
time TRPDformer models determined the system
response timing. The IPUs in the first and second
LUUs after the detected TRP were discarded.

The pause and score thresholds were set to 200
ms and 0.45, respectively, ensuring that both mod-
els achieved the same recall of 0.7. Consequently,
we prepared 117 stimulus pairs where the two
models disagreed on the TRP detection. Table 2
presents the number of stimulus pairs for each con-
dition. Subjects rated which system response was
more natural based on the timing on a scale of one
to four. Each stimulus was rated by 40 subjects.
Figure 8 depicts the distribution of the scores aver-
aged over the subjects.

As expected, the subjects assigned higher rat-
ings to the model that successfully detected TRPs
compared to the model that failed to do so. This
result indicates that differences in TRP detection
are meaningful for humans. Interestingly, when
both models incorrectly detected TRPs, the sub-
jects preferred the proposed model over the VAD-
based model. Given that the proposed model out-

Table 2: Number of stimulus pairs

TRPDformer VAD-based Count

Correct Incorrect 65
Incorrect Correct 23
Incorrect Incorrect 29

1.0 2.0 3.0 4.0
Preference score

TRPDformer: Correct
VAD-based: Incorrect

TRPDformer: Incorrect
VAD-based: Correct

TRPDformer: Incorrect
VAD-base: Incorrect

Figure 8: Results of the preference test. A higher score
represents that the proposed model is better.

performed the VAD-based model AUC, the effec-
tiveness of the proposed model when applied to
spoken dialogue systems was suggested.

6 Conclusion

This study addressed the continual TRP detection
from acoustic features to determine for spoken dia-
logue systems. The proposed model, TRPDformer,
outperformed the VAD-based model when trained
and evaluated on CEJC in units of IPUs. Further-
more, a preference test conducted with third-party
listeners revealed that the superiority of the pro-
posed model was perceptible to humans.

Finally, we discuss future direction. The com-
putational delay of the proposed model in stream
processing and its robustness against noise and re-
verberation should be evaluated in a manner simi-
lar to previous studies on VAP (Inoue et al., 2024,
2025). The proposed model should also be inves-
tigated in different domains other than everyday
conversation, as well as in languages other than
Japanese. Creating a new dataset of human-system
spoken dialogues in quiet and anechoic conditions
with TRP labels is a promising direction, though
it would require considerable investment. Finally,
evaluating a spoken dialogue system incorporating
the proposed model remains an important direction
for future research.
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