@inproceedings{gan-etal-2025-improving,
title = "Improving {LLM}s' Learning of Coreference Resolution",
author = "Gan, Yujian and
Liang, Yuan and
Lin, Yanni and
Yu, Juntao and
Poesio, Massimo",
editor = "B{\'e}chet, Fr{\'e}d{\'e}ric and
Lef{\`e}vre, Fabrice and
Asher, Nicholas and
Kim, Seokhwan and
Merlin, Teva",
booktitle = "Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = aug,
year = "2025",
address = "Avignon, France",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.sigdial-1.25/",
pages = "311--321",
abstract = "Coreference Resolution (CR) is crucial for many NLP tasks, but existing LLMs struggle with hallucination and under-performance. In this paper, we investigate the limitations of existing LLM-based approaches to CR{---}specifically the Question-Answering (QA) Template and Document Template methods{---}and propose two novel techniques: Reversed Training with Joint Inference and Iterative Document Generation. Our experiments show that Reversed Training improves the QA Template method, while Iterative Document Generation eliminates hallucinations in the generated source text and boosts coreference resolution. Integrating these methods and techniques offers an effective and robust solution to LLM-based coreference resolution"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gan-etal-2025-improving">
<titleInfo>
<title>Improving LLMs’ Learning of Coreference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yujian</namePart>
<namePart type="family">Gan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuan</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanni</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juntao</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabrice</namePart>
<namePart type="family">Lefèvre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Asher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teva</namePart>
<namePart type="family">Merlin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Avignon, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Coreference Resolution (CR) is crucial for many NLP tasks, but existing LLMs struggle with hallucination and under-performance. In this paper, we investigate the limitations of existing LLM-based approaches to CR—specifically the Question-Answering (QA) Template and Document Template methods—and propose two novel techniques: Reversed Training with Joint Inference and Iterative Document Generation. Our experiments show that Reversed Training improves the QA Template method, while Iterative Document Generation eliminates hallucinations in the generated source text and boosts coreference resolution. Integrating these methods and techniques offers an effective and robust solution to LLM-based coreference resolution</abstract>
<identifier type="citekey">gan-etal-2025-improving</identifier>
<location>
<url>https://aclanthology.org/2025.sigdial-1.25/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>311</start>
<end>321</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving LLMs’ Learning of Coreference Resolution
%A Gan, Yujian
%A Liang, Yuan
%A Lin, Yanni
%A Yu, Juntao
%A Poesio, Massimo
%Y Béchet, Frédéric
%Y Lefèvre, Fabrice
%Y Asher, Nicholas
%Y Kim, Seokhwan
%Y Merlin, Teva
%S Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2025
%8 August
%I Association for Computational Linguistics
%C Avignon, France
%F gan-etal-2025-improving
%X Coreference Resolution (CR) is crucial for many NLP tasks, but existing LLMs struggle with hallucination and under-performance. In this paper, we investigate the limitations of existing LLM-based approaches to CR—specifically the Question-Answering (QA) Template and Document Template methods—and propose two novel techniques: Reversed Training with Joint Inference and Iterative Document Generation. Our experiments show that Reversed Training improves the QA Template method, while Iterative Document Generation eliminates hallucinations in the generated source text and boosts coreference resolution. Integrating these methods and techniques offers an effective and robust solution to LLM-based coreference resolution
%U https://aclanthology.org/2025.sigdial-1.25/
%P 311-321
Markdown (Informal)
[Improving LLMs’ Learning of Coreference Resolution](https://aclanthology.org/2025.sigdial-1.25/) (Gan et al., SIGDIAL 2025)
ACL
- Yujian Gan, Yuan Liang, Yanni Lin, Juntao Yu, and Massimo Poesio. 2025. Improving LLMs’ Learning of Coreference Resolution. In Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 311–321, Avignon, France. Association for Computational Linguistics.