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Abstract

Coreference Resolution (CR) is crucial for
many NLP tasks, but existing LLMs strug-
gle with hallucination and under-performance.
In this paper, we investigate the limita-
tions of existing LLM-based approaches
to CR—specifically the Question-Answering
(QA) Template and Document Template meth-
ods—and propose two novel techniques: Re-
versed Training with Joint Inference and Iter-
ative Document Generation. Our experiments
show that Reversed Training improves the QA
Template method, while Iterative Document
Generation eliminates hallucinations in the gen-
erated source text and boosts coreference res-
olution. Integrating these methods and tech-
niques offers an effective and robust solution
to LLM-based coreference resolution 1.

1 Introduction

Coreference resolution involves detecting and clus-
tering different mentions that refer to the same dis-
course world entity. As a task that requires linguis-
tic and extra-linguistic understanding, it plays a
crucial role for many downstream natural language
processing tasks, such as information extraction,
text summarization, chatbots, and dialogue systems.
As a result, CR has garnered significant attention
from the NLP community (Poesio et al., 2023).

The evolution of coreference resolution mod-
els can be divided from rule-based and statistical
learning approaches to deep learning approaches
(Liu et al., 2023; Poesio et al., 2023). In the
past few years, Large Language Models (LLMs),
which implicitly incorporate contextual informa-
tion and commonsense knowledge, have revolu-
tionized NLP by significantly improving perfor-
mance across many tasks. This advancement has
led researchers to investigate LLMs’ potential for
coreference resolution.

1Our code is available here.

Recent studies have already proved the feasibil-
ity of prompting LLMs to resolve coreferences,
with a special focus on zero- and few-shot applica-
tions (Yang et al., 2022; Agrawal et al., 2022; Le
and Ritter, 2024; Zhu et al., 2024; Gan et al., 2024).
Le and Ritter (2024) have shown that prompt-based
LLMs surpass previous unsupervised systems but
still perform worse than state-of-the-art supervised
models. In their experiments, two prompt tem-
plates were used, namely the Question-Answering
(QA) Template and the Document Template, as
shown in Figure 1. Specifically, Le and Ritter
(2024) have focused more on the Document Tem-
plate, while Gan et al. (2024) have concentrated
on the QA Template. Experimental results in our
comparative study show that the performance of
the Document Template is superior to that of the
QA Template.

However, it is found that the Document Tem-
plate method relies on a key assumption: LLMs do
not generate hallucinations when resolving corefer-
ences. But LLMs do produce hallucinations, which
is challenging to match the generated document
with the correct places in the original text. For
example, in Figure 1, if the LLM wrongly gen-
erates “There are a candle a wall ...” as “There
are a candle a candle a wall ...” with an unneces-
sary mention “a candle” repeated, it becomes much
harder to align these mentions with the original doc-
ument. Through studying the code given by Le and
Ritter (2024), we have noticed that they removed
examples where LLMs created hallucinations, only
keeping cases where the original text matched cor-
rectly (i.e., without hallucinations). However, we
have found that hallucinations are quite common,
especially in linguistically complex texts, where
the problem becomes even more noticeable. Al-
though the QA Template method is less affected
by hallucinations, its performance is weaker than
the Document Template method, making it less
reliable for coreference resolution.

https://github.com/ygan/LLMs-Coreference
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To overcome the limitations of both the QA and
Document Template methods, we propose two new
approaches: Reversed Training with Joint Infer-
ence, and Iterative Document Generation. Our ex-
periments show that the Iterative Document Gen-
eration method not only completely removes hal-
lucinations of LLMs but also improves the final
CoNLL score. Meanwhile, the Reversed Training
with Joint Inference method significantly improves
the LLM’s CR performance when using the QA
Template. Ablation studies also show that remov-
ing any component of this solution reduces the
CoNLL score.

Overall, our work makes two key contributions:

1. We propose the Reversed Training and Joint
Inference methods for coreference resolution
based on the QA Template. Ablation study
shows that these methods effectively improve
LLM performance.

2. We propose the Iterative Document Genera-
tion method for coreference resolution based
on the Document Template. Experiments
demonstrate that this method not only en-
hances LLM performance, but also effectively
tackles the issue of hallucination in LLMs
when using the Document Template.

2 Related Work

2.1 Traditional Coreference Resolution
Systems

Typically, traditional coreference resolution sys-
tems have addressed the task through mention-
ranking models. Early approaches, such as those
by Wiseman et al. (2015) and Clark and Manning
(2016), used a two-step process. First, a mention
detector identified potential mentions in the text.
Then, a separate clustering step grouped these men-
tions into coreference clusters. Lee et al. (2017)
introduced a pivotal advancement with a deep learn-
ing system that jointly performed mention detec-
tion and clustering. This end-to-end approach
proved to be both effective and simple, becoming
the standard architecture for coreference resolution
for a considerable period.

Building on this foundation, subsequent work
explored various enhancements. Lee et al. (2018)
and Kantor and Globerson (2019) incorporated con-
textual embeddings to improve performance. Yu
et al. (2020) focused on addressing the challenges
posed by singletons and non-referring expressions.

Joshi et al. (2019, 2020) further refined the model
by replacing LSTMs with fine-tuned BERT and
SpanBERT, harnessing the power of transformer
architectures.

While these advancements refined the core archi-
tecture, research has also began to shift towards ex-
ploring alternative approaches, such as reformulat-
ing the task using question-answering frameworks
and document annotation templates.

2.2 Coreference Resolution as Question
Answering

One line of studies have investigated the potential
of framing coreference resolution as a question-
answering task.

Wu et al. (2020) recast coreference resolution
as the task of finding all other mentions (answers)
that belong to the same cluster as a given mention
(question). They utilized SpanBERT, pre-trained
on Quoref and SQuAD 2.0, to encode the document
and employed a BIO scheme to tag valid answers
for each mention. Their findings highlighted the im-
portance of considering scores from both directions
(i.e., Si,j and Sj,i for a mention pair i, j), which
resonates with our observations on reversed train-
ing discussed later in this paper (Section 4.1). Ara-
likatte et al. (2021) adopted a BERT-based machine
reading comprehension (MRC) approach, focusing
on resolving ellipsis by identifying the answer span
(antecedent) for a given mention. Yang et al. (2022)
evaluated early GPT models (e.g., GPT-2) on the
ECB+ corpus in a few-shot setting, using a QA
Template for binary judgments on gold mention
pairs. However, this early attempt did not achieve
significant results. Bohnet et al. (2023) achieved
state-of-the-art results by fine-tuning the mT5-XXL
(13B) model to output candidate mentions and their
corresponding clusters.

More recently, Gan et al. (2024) have demon-
strated prompt-based instruction-tuned language
models was feasible to resolve coreference. One
of the two templates used in their study was the
Question-Answering (QA) Template, where the
language model generates the answer when given
a passage and an open-ended wh-question. With
further exploration on this QA Template, Gan et al.
(2024) have conducted a comprehensive evaluation
on the capabilities of different LLMs to resolve
coreferences. In Gan et al. (2024)’s QA Template,
the antecedent and its sentence ID was generated
in a pair. In the same year, Zhu et al. (2024) have
conducted a similar evaluation of several recent
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Figure 1: An example of the QA and Document Templates for Coreference Resolution. In the QA Template, LLMs
generate answers based on input content and questions. In the Document Template, LLMs analyze the marked
mention and assign a cluster ID to it.

LLMs on prompt-based coreference resolution as a
component of context understanding. A key differ-
ence from Gan et al. (2024)’s work is that Zhu et al.
(2024) formulated the task as a multiple-choice
problem.

2.3 Document Annotation-based Coreference
Resolution

Another line of research have explored the use of
document annotation for coreference resolution.

Zhang et al. (2023) introduced a seq2seq ap-
proach using a prompt-fine-tuned T0 model. This
system took a document as input and produces the
same document with annotated mentions and clus-
ters. Their results demonstrated that this approach
can achieve performance comparable to that of
Bohnet et al. (2023). Le and Ritter (2024) have pro-
posed a prompt-based method where LLMs were
provided with documents containing highlighted
mentions (either predicted or gold) followed by a
special cluster placeholder (#). The LLMs were
then tasked with predicting and filling the place-
holders with appropriate cluster IDs. However, our
preliminary experiments with this method revealed
issues including hallucination. Our solutions to this
problem will be given in Section 5.

Our work mainly builds upon the approach of
Le and Ritter (2024) and Gan et al. (2024), further
refining the QA and Document Template to achieve

significant improvements.

2.4 Reverse Training

The “Reversal Curse” describes LLMs’ inability to
understand the symmetric property of identify rela-
tion, i.e., LLMs trained on “A is B” may struggle
to learn “B is A” (Berglund et al., 2024).

The Reversal Curse has been remedied by the
recent attempts of reverse training. Yu et al. (2024)
have demonstrated that LLMs can learn from mod-
eling in both directions with comparable profi-
ciency. In their study, a reverse training sample was
constructed by directly reversing the original token
sequence. Golovneva et al. (2024) have proved
the effectiveness of training by reversing the or-
dering of segmented text chunks. In addition to
positional relationship in linear sequences, the con-
cept of “reverse” can be generalized to more types
of association in many cases, where information
presented in the reverse order is no less valuable
than that in the original order. In multi-modal tasks,
for example, Gul and Artzi (2024) have reversed
the input of image description and the output of
image classification.

Inspired by the previous work, we attempt to in-
troduce reverse training to coreference resolution,
as many coreferential relationships can be deemed
as bidirectional, thus increasing the amount of use-
ful information for model training.
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3 LLM-Based Coreference Resolution

3.1 The Question-Answering (QA) Template

A Question-Answering (QA) Prompt Template is a
structured format that guides LLMs in generating
accurate responses to questions. It follows the struc-
ture Instruction + Sentences + Question for
coreference resolution. The first part Instruction
guides the LLM in resolving candidate mentions.
The second part Sentences provides the necessary
context in a set of sentences, including the one con-
taining the target mention. The last part Question
specifies the target mention to analyze to find its
coreferential mention. An example of the QA Tem-
plate can be seen in Figure 1.

3.2 The Document Template

The Document Template combines an instruction
with a document for processing. The document
marks candidate mentions and designates character
positions where the LLM must output cluster IDs
for these mentions. These cluster IDs group coref-
erential mentions together, with all mentions in a
cluster referring to the same entity. This structure
enables the LLMs to perform coreference resolu-
tion. An example of the Document Template can
be seen in Figure 1.

3.3 Supervised Fine-Tuning for Coreference
Resolution

To improve LLMs’ performance in coreference res-
olution, we converted existing datasets into the
two template formats described above for super-
vised fine-tuning (SFT). This process adapted open-
source LLMs to the coreference resolution task.

Using the QA Template as an example, given
a coreference dataset D, each document d con-
tains multiple mentions mk, k = 1, 2, . . . , n. Each
queried mention mk has its corresponding resolved
mention rk as the answer. By inserting d and mk

into the QA Template, we create a prompt pi and
form a training data pair (pi, rpi), where rpi equals
rk. This process transforms the dataset D into a
training dataset T = (pi, rpi). Using this training
dataset T and a large language model M , SFT aims
to minimize the loss to get the optimal M∗:

min
M

ΣT
i=1L(M(pi), rpi) (1)

After fine-tuning, we use the optimal model M∗

for inference. The inference data will also be con-
verted into the corresponding template format.

4 The Refined QA Template Approach

4.1 Reversed Training for Conference
Resolution

Based on the previous work, we reverse the pattern
“A refers to B” in the QA Template (input A, out-
put B) to “B refers to A” (input B, output A). We
propose two training modes: forward training and
backward training. In this context, forward training
is exemplified in Figure 1. In the backward mode,
however, as the position of the coreferential men-
tion is uncertain, the backward prompt requires the
entire document to be provided.

However, unlike other tasks, forward and back-
ward training alone are not sufficient for the CR
task, because it also involves singletons that do not
refer to any other mentions. To address this issue,
we designed a new question task specifically to
identify mentions without antecedents:

“List all phrases in the last sentence that
do not refer to any previous phrases pre-
ceding them. Your response should be
formatted as a Python list containing all
phrases from the candidate list that do
not refer to any preceding phrases. If no
such phrases can be found, simply return
‘None.”’

In summary, we designed three different QA
tasks for reversed training: forward training, back-
ward training, and finding all singletons.

4.2 Learning to Generate a Chain
As discussed in Section 4.1, one may assume a
canonical case that the target mention refers to only
one coreferential mention, be it the antecedent in
the forward variation, or the anaphor in the back-
ward variation. Actually, for a target mention,
the number of coreferential mentions generated by
LLM can be more than one (n, n = 0, 1, 2, ..., i).
Specially, when n = 0, the target mention is a
singleton that fails to form a chain; when n = 1,
the target mention and its coreferential mention
form a coreference chain with the minimal length.
Prompting LLMs to generate multiple coreferen-
tial mentions, if any, may provide more informa-
tion that model training may benefit from. Thus,
we advocate the method of learning to generate a
coreference chain, rather than a single mention. In
practice, we train the LLM to identify the two most
recent mentions, as shown in the second and third
panels of Figure 2.
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Figure 2: A comparison between different inference approaches.

4.3 Joint Inference
Joint Inference is based on reversed training and
learning to generate a chain. After the model gen-
erates results for forward, backward, and singleton
tasks, we compare the multiple outputs to obtain
the final correct answer. Figure 2 illustrates an ex-
ample of Joint Inference. In this case, assuming the
LLM incorrectly infers that A refers to B, we can
correct this mistake by comparing the outputs of
backward tasks C, D, and B, ultimately correcting
that A refers to D.

The joint inference algorithm takes two inputs: a
set of forward pairs FP and a set of backward pairs
BP . The algorithm first assigns initial weights to
pairs in both groups, then updates these weights
and stores the sum of weights for pairs appearing
in both BP and FP in W . Pairs with weights ex-
ceeding 2 are used to create longer chains C, which
are considered correct. Finally, the algorithm com-
bines the pair weights W and chains to generate
the final output (anaphor, antecedent).

How to combine the pair weights W and chains
C to generate the final output? The process iterates
through all mentions in the weight list W . For each
mention a, if any candidate referent b, b ∈ W [a]
has a weight W [a][b] ≥ 2, the referent of a is
considered found. Otherwise, the algorithm exam-
ines pairs of candidate referents b, b ∈ W [a] and
d, d ∈ W [a]. If both b and d co-occur in any chain
C, their respective weights in W are incremented
by 1. This process updates all pair weights using
the chain information. After updating is complete,
the algorithm selects the referent phrase with the
highest weight for each mention to create the final
pair (anaphor, antecedent).

5 Iterative Document Generation

Le and Ritter (2024)’s Document Template pro-
vides the complete document with marked candi-
date mentions and designated character positions.

Figure 3: An example of the iterative document gener-
ation process of the refined Document Template. For
each iteration, the input consists of a text segment con-
taining a marked mention and its designated position at
the end. The LLMs then predict the cluster ID for the
marked mention. This predicted ID and its following
content are appended to the end, creating a new prompt
for analyzing the next mention. This sequential process
continues till all mentions have been analyzed.

The LLMs must input cluster IDs for these can-
didate mentions simultaneously at the designated
positions. However, we discovered that process-
ing the entire document and analyzing all men-
tions at once led to hallucination—where the LLM
would generate irrelevant words not present in the
document instead of completing the intended task.
This issue significantly reduced the model’s UA-
SA score from approximately 89 (when excluding
hallucination results from evaluation) to 59 (when
including hallucination results).

To address this issue, we modified the full docu-
ment generation process to generate only one men-
tion’s cluster ID at a time, as shown in Figure 3.
The advantage of generating just one cluster ID per
step is that it significantly reduces the difficulty of
content generation for the LLM, helping to avoid
hallucinations. The process begins with a text seg-
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ment containing the document’s first marked men-
tion and its designated position. The LLM assigns
a cluster ID to this mention. After filling this pre-
dicted cluster ID into the designated position, a
new text segment is created for analyzing the next
mention. This sequential analysis continues until
all mentions in the document are processed. Dur-
ing training, the cluster IDs are filled with correct
values. During inference, they are filled with IDs
generated by the LLMs.

In prompt design, since only a cluster ID is pre-
dicted, using just the partial sentence from Figure 3
may not be enough for accurate prediction. Con-
sidering the context is crucial for understanding
the coreference relationship of the mention. There-
fore, based on the Document Template in Figure 1,
we removed the full text from the input and instead
added the relevant sentence containing the last men-
tion. Unlike in Figure 1, this relevant sentence does
not include the mention’s position annotation.

6 Experiment

6.1 Experimental Setup

Dataset. We used the same datasets as those
of Gan et al. (2024) and Le and Ritter
(2024): OntoNotes 5.0 (Pradhan et al., 2012) and
CODI/CRAC (Poesio et al., 2018; Yu et al., 2022).
We utilize three subsets of CODI/CRAC: LIGHT,
Penn Treebank, and TRAINS. The training set sizes
vary significantly across datasets, with OntoNotes
having the largest set, while LIGHT, Penn Tree-
bank, and TRAINS comprise 2.73%, 24.95%, and
10.21% of OntoNotes’ training set size, respec-
tively. Consistent with the experimental setup of
previous work, we used gold mentions. It should
be noted that the QA Template’s prompt does not
specify the exact mention in the question, mak-
ing it slightly more challenging compared to the
Document Template.

To ensure consistency with prior work, we use a
subset of the test set for comparison with Gan et al.
(2024), and the full test set for comparison with Le
and Ritter (2024). The four datasets used in this
study are shown as follows:
• OntoNotes: We extracted 2,516 training docu-

ments from its training set, resulting in 128,319
training examples for the QA Template. We ran-
domly selected 55 test documents from its test
set, yielding 3,624 test examples for the QA Tem-
plate.

• LIGHT: We used the full LIGHT training set,

resulting in 3,499 training examples for the QA
Template, and randomly selected 4 test docu-
ments, yielding 872 test examples.

• Penn Treebank: We used the full Penn Tree-
bank training set, resulting in 31,979 training
examples for the QA Template, and randomly
selected 5 test documents, yielding 1067 test ex-
amples.

• TRAINS: We used the full Penn Treebank train-
ing set, resulting in 13,087 training examples for
the QA Template, and randomly selected 4 test
documents, yielding 757 test examples.

• Combination: We combined the training sets
from LIGHT, Penn Treebank, and TRAINS. No
test set was used.

Models. To validate the feasibility of our method,
we fine-tuned two different large language models
(LLMs) as base models: LLama 3.1 (Grattafiori
et al., 2024) and Qwen 2.5 (Qwen et al., 2025).
All experiments were conducted using LLAMA
Factory (Zheng et al., 2024), with LoRA-based (Hu
et al., 2021) fine-tuning utilizing the bf16 precision.
The relevant hyperparameters were configured as
follows:
• preprocessing_num_workers: 16
• per_device_train_batch_size: 1
• gradient_accumulation_steps: 4
• learning_rate: 1.0e-4
• num_train_epochs: 3.0
• lr_scheduler_type: cosine
• warmup_ratio: 0.1

Other parameters were set to the default values
provided by LLAMA Factory (Zheng et al., 2024).
The experiments were conducted on single or mul-
tiple A100 GPUs (40GB/80GB). For multi-GPU
setups, DeepSpeed was used to optimize parallel
training.

The symbols associated with the models in this
section are defined as follows:
• LLAMA The LLama 3.1 8B Instruct model.
• QWEN The Qwen 2.5 7B Instruct model.
• R indicates that the model is trained using re-

versed learning based on the QA Template.
• S indicates that the model is trained using stan-

dard fine-tuning based on the QA Template.
• C represents that the model is trained on the Com-

bination set.
• OC indicates that the model is trained on the

OntoNotes, and then evaluated separately on
CODI/CRAC and OntoNotes.

• L indicates that the model is trained to predict
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LIGHT Penn Treebank TRAINS OntoNotes
Approach UA -S -SA UA -S -SA UA -S -SA UA -S -SA
LLAMA S† 84.02 70.39 83.83 70.60 78.63 75.03 82.86 84.05
LLAMA R 85.77 73.20 86.86 77.12 79.20 74.68 81.23 82.58
LLAMA SL 86.64 75.69 86.09 74.47 79.58 75.07 81.80 82.83
LLAMA RL 88.20 77.81 87.99 78.56 81.76 78.36 83.04 84.60
LLAMA SC 87.25 75.54 85.98 74.90 78.18 73.38
LLAMA RC 87.30 76.18 85.78 74.84 81.97 77.92
LLAMA SCL 87.20 77.09 85.46 74.25 82.69 78.37
LLAMA RCL 89.29 80.40 87.46 77.86 83.67 81.02
QWEN SL 82.66 68.35 85.72 73.66 80.79 76.48
QWEN RL 87.08 76.49 86.19 75.10 82.62 79.64
QWEN S† 82.48 67.50 84.22 71.54 78.14 72.48
QWEN R 86.35 75.19 85.98 74.93 79.54 74.59

Table 1: Comparison of the training effects between Reversed Learning and fine-tuning based on original data. †
denotes results reproduced from Gan et al. (2024). Our reproduced results outperform those reported by Gan et al.
(2024) for two main reasons: (1) we fixed an evaluation issue in their original setup, where non-referring expressions
were not excluded during scoring; and (2) our model architecture differs from theirs, which also contributes to the
performance gains. To facilitate a lightweight comparison, we conducted testing on a randomly selected subset of
the test dataset only, which is sufficient to verify the effectiveness of our method.

a coreference chain (i.e., two mentions instead
of just one) based on the QA Template. If the
model also uses reversed learning (denoted by
RL), joint inference will automatically be ap-
plied in this case.

• F indicates that the model is trained to predict a
full document based on the Document Template.

• I indicates that the model is trained using the
iterative document generation method based on
the Document Template.

Metrics. For the QA Template, we use the Uni-
versal Anaphora (UA) scorer (Poesio et al., 2024)
to evaluate different approaches, where UA rep-
resents the full score, and ‘-S -SA’ indicate the
CoNLL score (i.e., without singletons and split
antecedents). For the Document Template, consis-
tent with the experiment setup of Le and Ritter
(2024)2, we use ‘-SA’ to indicate UA without split
antecedents for evaluation and comparison across
different methods. We also calculate the Pass score
and Exact Match (EM) score to quantify the extent

2The Reference Coreference Scorer (Pradhan et al., 2014)
does not score singletons (-S -SA). However, Le and Ritter
(2024) retrained singletons in their evaluation. This may not be
a big problem when evaluating on corpora without singleton
mentions (e.g., OntoNotes), as singletons will only appear in
system clusters. However, in corpora with singleton mentions
(e.g., CODI/CRAC), this difference in setting can result in
a change of more than 10% in CoNLL F1. To make a fair
comparison, we followed the same settings when compared to
their system.

of hallucinations. “Pass” denotes the percentage of
documents that passed the alignment check as de-
fined in Le and Ritter (2024)’s work. “EM” refers
to the exact match rate between the generated text
and the original reference text.

Baselines. For both the QA and the Document
Templates, we adopted the approaches proposed
in Le and Ritter (2024)’s work as our baseline
methods. However, their experiments were con-
ducted using LLama 2, which is now somehow
outdated. Recently, the LLama 3.1 8B and Qwen
2.5 have been released, featuring architectural im-
provements and training on a significantly larger
dataset, resulting in noticeably enhanced perfor-
mance.

To establish updated baseline results for fair com-
parison, we fine-tuned LLama 3.1 8B and Qwen
2.5 using the same methods described by Le and
Ritter (2024). In our experiments, the fine-tuned
models are denoted with S for the QA Template
and F for the Document Template.

6.2 QA Template Results

From the results shown in Table 1, we observe that
models trained with reversed learning generally out-
performed those trained using standard fine-tuning
across most datasets, in terms of both the full score
(UA) and the CoNLL score excluding singletons
and split antecedents (denoted as -S -SA). This held
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LIGHT Penn Treebank TRAINS
Approach UA -S -SA UA -S -SA UA -S -SA
LLAMA RL 88.20 77.81 87.99 78.56 81.76 78.36
w/o Join Inference 87.95 77.74 87.56 77.83 81.45 77.46
w/o R 86.64 75.69 86.09 74.47 79.58 75.07
w/o L 84.02 70.39 83.83 70.60 78.63 75.03
LLAMA RCL 89.29 80.40 87.46 77.86 83.67 81.02
w/o Join Inference 88.46 78.87 86.79 76.55 83.08 79.88
w/o R 87.20 77.09 85.46 74.25 82.69 78.37
w/o L 87.25 75.54 85.98 74.90 78.18 73.38
QWEN RL 87.08 76.49 86.19 75.10 82.62 79.64
w/o Join Inference 86.59 76.66 85.99 74.46 81.13 77.52
w/o R 82.66 68.35 85.72 73.66 80.79 76.48
w/o L 82.48 67.50 84.22 71.54 78.14 72.48

Table 2: Ablation Analysis of Different QA Template
Approaches.

true for both the LLama 3.1 and Qwen 2.5 models.
For both LLMs, reversed learning consistently

yielded higher performance across all datasets, ex-
cept for the comparison between LLAMA S and
LLAMA R on the OntoNotes dataset. This sug-
gests that when the training dataset is sufficiently
large (128,319 training examples in OntoNotes)
and diverse, it is enough for the models to learn
the task. After adding Joint inference, the perfor-
mance of LLAMA RL successfully surpassed that
of LLAMA SL and LLAMA S. This indicates that
the method proposed in this paper indeed enhances
the model’s ability to solve CR under the QA Tem-
plate.

On the other hand, for smaller datasets like
LIGHT, Penn Treebank, TRAINS, and their com-
bination (which vary in size from 3,499 to 48,565
examples), reversed learning consistently outper-
formed standard fine-tuning, highlighting its advan-
tage in situations where training data is limited. For
Qwen 2.5, similar trends can be observed. Among
all the comparisons, the largest improvement was
seen when transitioning from QWEN SL to QWEN
RL. Specifically, the ‘UA’ score increased by 4.56
(from 82.66 to 87.08) and the ‘-S -SA’ score im-
proved by 8.14 (from 68.35 to 76.49).

Ablation Study. To understand the contributions
of each component, we conducted an ablation study
by removing key elements from the model. We
examined three components: Joint Inference, Re-
versed Learning (R), and coreference chain pre-
diction (L). Results in Table 2 show their impact
on performance across the LIGHT, Penn Treebank,
and TRAINS datasets.

It is clear that the best performance is achieved
when all components are present. Table 2 con-
firms that each component clearly contributes to
the model’s overall performance. Removing any
of these components leads to a reduction in perfor-

mance, highlighting the effectiveness of the pro-
posed approach in solving the coreference resolu-
tion task using the QA Template.

6.3 Document Template Results

From Table 3, we observe that hallucinations were
severe in full document generation, as indicated
by significantly lower EM scores and alignment
check pass rates in the OCF setting. In contrast,
our proposed iterative generation method (OCI)
not only eliminated hallucinations—achieving a
100% pass rate on the alignment check across all
datasets—but also significantly improved the Exact
Match (EM) scores.

The EM metric provides a stricter evaluation
of output fidelity, measuring whether the gener-
ated text exactly matches the gold reference. Our
method achieved 100% EM across all datasets, un-
derscoring its ability to produce highly faithful out-
puts. In comparison, full document generation of-
ten failed to match reference texts exactly, with EM
scores ranging from 62.50% to 92.11% depending
on the dataset and model. This further supports
our claim that iterative generation produces more
precise and consistent outputs.

Moreover, even when focusing solely on docu-
ments that passed the alignment check, our method
still consistently outperformed full generation in
EM, revealing that alignment check alone may
not capture finer-grained errors that EM can de-
tect. This discrepancy is especially apparent in the
TRAINS dataset. Although the alignment pass rate
was 100% for both OCF and OCI, EM for OCF re-
mained low (62.50%–81.25%), suggesting that its
outputs, while structurally aligned, still contained
subtle inconsistencies or content deviations.

These results collectively demonstrate that full
document generation lacks robustness and strug-
gles to achieve both structural alignment and con-
tent fidelity. Our iterative approach not only en-
sures alignment but also guarantees high-fidelity
generation, as reflected in both pass rates and exact
match accuracy.

7 Discussion

7.1 Why does the Document Template Work
Better?

The Document Template excels because it explic-
itly marks all mentions, guiding the LLM to focus
only on relevant parts of the text. This structured
approach reduces the complexity, as the model does
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LIGHT Penn Treebank TRAINS OntoNotes
Approach -SA Pass EM -SA Pass EM -SA Pass EM -SA Pass EM
LLAMA OCF† 86.6 92.11% 81.58% 82.5 100% 70% 73.4 100% 62.50% 95.3 99.71% 97.41%
LLAMA OCI 87.8 100% 100% 85.2 100% 100% 76.4 100% 100% 94.9 100% 100%
QWEN OCF† 87.0 97.37% 92.11% 83.2 98.33% 71.67% 77.2 100% 81.25% 95.0 99.14% 97.13%
QWEN OCI 85.7 100% 100% 80.6 100% 100% 79.6 100% 100% 94.8 100% 100%

Table 3: Comparison of Training Outcomes Between Iterative and Full Document Generation on the full test dataset.
† denotes results reproduced from Le and Ritter (2024). Tables 1 and 2 are based on a subset of the test set, whereas
this table uses the full test set to ensure a fair comparison with Le and Ritter (2024), which uses the complete test
set.

not need to identify appropriate mentions within
the entire document, as it does with the QA Tem-
plate. Essentially, it simplifies the task to some-
thing akin to a classification problem, where the
LLM identifies coreference relations within prede-
fined segments, making it easier and more accurate.

7.2 Do We Still Need the QA Template?

From a purely CR perspective, the Document Tem-
plate is indeed better because the task is simpler
and easier to train. However, the goal of CR re-
search is not just to resolve coreferences but also
to enhance the model’s understanding of logical
relationships in a language. While the Document
Template performs better, it may only train a clas-
sification model that relies on mention annotations
or detection, which limits its integration with other
tasks. We consider it essentially a classification
model because, in the Document Template task,
the large language model only needs to generate
the cluster ID to which a given mention belongs.
In other words, it simply has to decide whether the
mention belongs to a new cluster (a new cluster ID)
or an existing one (an existing cluster ID). In con-
trast, the QA Template requires no mention annota-
tions in the prompt, and the trained model is likely
to have a better understanding of language, making
it easier to integrate with other tasks. Therefore,
in the long run, learning from the QA Template
remains irreplaceable, particularly for cross-task
applications and improving language comprehen-
sion.

8 Conclusion

In this paper, we have analyzed the limitations of
current approaches to using LLMs for coreference
resolution, particularly the QA and Document Tem-
plates, and then proposed two novel methods: Re-
versed Training with Joint Inference, and Iterative
Document Generation. Our findings can be summa-
rized as follows. First, Reversed Training enhances
the QA Template method. Second, Iterative Doc-

ument Generation eliminates hallucinations with
an improvement in task performance. These meth-
ods and techniques proposed in our study form an
integrated solution to enhance model learning in
LLM-based coreference resolution.

Limitations

Although the methods proposed in this paper have
been experimentally validated on English coref-
erence resolution tasks, they have not been ex-
tensively tested on coreference tasks in other lan-
guages. Therefore, we are currently unable to as-
sess the applicability of these methods to other
languages. Additionally, due to limited computa-
tional resources, the methods have not been tested
on larger-scale LLMs (e.g., models with 70B pa-
rameters or more), so we are uncertain about their
performance of such models.
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