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Abstract

We develop a task-oriented spoken dia-
logue system (SDS) that regulates emo-
tional speech based on contextual cues to
enable more empathetic news conversations.
Despite advancements in emotional text-
to-speech (TTS) techniques, task-oriented
emotional SDSs remain underexplored due
to the compartmentalized nature of SDS
and emotional TTS research, as well as
the lack of standardized evaluation metrics
for social goals. We address these chal-
lenges by developing an emotional SDS
for news conversations that utilizes a large
language model (LLM)-based sentiment
analyzer to identify appropriate emotions
and PromptTTS to synthesize context-
appropriate emotional speech. We also pro-
pose subjective evaluation scale for emo-
tional SDSs and judge the emotion reg-
ulation performance of the proposed and
baseline systems. Experiments showed that
our emotional SDS outperformed a baseline
system in terms of the emotion regulation
and engagement. These results suggest the
critical role of speech emotion for more en-
gaging conversations. All our source code
is open-sourced.1

1 Introduction

In this work, we develop a task-oriented SDS
that can regulate emotional TTS based on con-
textual cues (emotional SDS) to enable more
empathetic news conversations. Task-oriented
SDSs must balance task- and social-goals to cre-
ate engaging interactions (Clavel et al., 2022),
with emotional speech regulation being crucial
among social-goals. For instance, synthesiz-
ing "sad" speech for tragic earthquake news

∗Equal contributions
1https://github.com/dhatchi711/

espnet-emotional-news/tree/emo-sds/egs2/emo_
news_sds/sds1

Figure 1: System architecture. Proposed system
uses emoTTS and sentiment analyzer.

can foster user empathy and engagement. Ap-
propriately managing emotional tone can thus
enhance both user perception and overall ex-
perience (Kurata et al., 2024; Concannon and
Tomalin, 2024). To support such needs, the
field of affective computing has developed emo-
tional TTS techniques, which generate emo-
tionally expressive speech by adjusting acous-
tic features like cadence, intensity, and pitch.
Recent emotional TTS systems have achieved
high-quality oral emotional expressions (Cho
and Lee, 2021; Wang et al., 2023; Bott et al.,
2024).

However, despite these advances, task-
oriented emotional SDSs remain underexplored.
This is primarily because socio-conversational
research has been compartmentalized (Clavel
et al., 2022), with SDS and emotional TTS de-
veloping separately and lacking an integrated
framework. Moreover, evaluating social-goals
like emotional speech regulation is difficult (Ku-
rata et al., 2024), as these goals are multidi-
mensional and lack clear definitions, leading to
few established evaluation metrics. Thus, the
gap between emotional TTS capabilities and
their effective integration into SDS highlights

https://github.com/dhatchi711/espnet-emotional-news/tree/emo-sds/egs2/emo_news_sds/sds1
https://github.com/dhatchi711/espnet-emotional-news/tree/emo-sds/egs2/emo_news_sds/sds1
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an important area for further research.
We develop a task-oriented emotional SDS

and propose its evaluation method. Specifi-
cally, we focus on news summarization and
Q&A as a target task due to its extensive prior
studies. For emotional speech regulation, we
adopt a cascade SDS architecture. We employ
a PromptTTS (Guo et al., 2022) fine-tuned
on the ESD dataset (Zhou et al., 2022) as
our emotional TTS model. For evaluation, we
use an empathy scale originally (Concannon
and Tomalin, 2024) and assess the SDS’s abil-
ity to regulate emotional speech. Addition-
ally, we manually evaluate both the system’s
emotional speech regulation and task achieve-
ment (Walker et al., 1997), comparing it with
SDSs that employ non-emotional TTS.

Through this study, we contribute to the
studies on socio-conversational system by:
(i) providing a method for developing emotional
SDS; and (ii) proposesing an evaluation method
of emotional SDS.

2 System Design and Method

As depicted in Figure 1, we develop an emo-
tional SDS for news conversations using a cas-
cade architecture, building on a strong baseline
(Arora et al., 2025) by adding emotional aware-
ness via sentiment-guided synthesis. Below, we
describe the core components of both systems.

The baseline system includes three modules:
ASR, LLM, and TTS. The ASR transcribes
user speech to text, which is encoded and
compared against a News Database for rele-
vant article retrieval. The LLM generates a
response based on both the transcript and re-
trieved news snippets, and the TTS outputs
spoken responses in a default tone. We utilize
Retrieval Augmented Generation (RAG) in our
system. The core ASR and RAG-LLM module
are shared: the ASR transcript is passed to a
RAG language model that selectively retrieves
news to ground its replies, using dynamic in-
context prompting for adaptability.

Our proposed system enhances the baseline
with a Sentiment Analyzer that infers the emo-
tional tone (neutral, happy, sad, angry, or
surprised) from the LLM’s text response. The
emotion tag is fed to PromptTTS, an emo-
tional TTS module that conditions speech syn-
thesis on both text and emotion, producing

expressive and empathetic responses. Com-
pared to the emotionally neutral baseline, our
system delivers more human-like, engaging in-
teractions through sentiment understanding
and emotional prosody.

3 Experiments

To evaluate the extent to which the proposed
method can control proper speech emotion,
we compared it with a baseline system using
human subjective judgments.

3.1 Datasets
For emotional TTS fine-tuning, we used the
English portion of the ESD dataset (Zhou et al.,
2022), splitting 17,500 utterances into training,
validation, and evaluation subsets across five
emotions. For sentiment analyzer fine-tuning,
we used GoodNewsEveryone (Bostan et al.,
2020) and GoEmotions (Demszky et al., 2020),
mapping their emotion tags to five target cat-
egories following Koufakou et al. (2024). As
the news database for retrieval, we used Free
News2, filtering for English articles and embed-
ding news titles with Chroma3 and Sentence
Transformers (Reimers and Gurevych, 2019).

3.2 System Setups
Proposed System We used Whisper Large
for ASR, LLaMA 3.2 1B for the language
model, and a sentence transformer for re-
trieving the top 1 relevant news. For emo-
tional TTS, we fine-tuned PromptTTS (pre-
trained on LJSpeech). Our preliminary analy-
sis showed that its quality was comparable to
FastSpeech (Ren et al., 2019) and VITS (Kim
et al., 2021) in terms of UTMOS, DNSMOS,
PLCMOS, and WER, and qualitative analysis
confirmed clear emotional variation. For the
sentiment analyzer, we fine-tuned a distilled
RoBERTa model (batch size 8, learning rate
0.00001, 4 epochs) after finding that prompt-
based LLM approaches tended to over-predict
sadness and surprise, achieving better perfor-
mance than Koufakou et al. (2024).

Baseline System The baseline system
shared the same modules as the proposed sys-
tem, except the sentiment analyzer and a VITS

2https://github.com/Webhose/free-news-datasets
3https://www.trychroma.com/
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Metric Item

RAG Evaluation The system was helpful to understand the retrieved news.
Task Achievement 1 (Usefulness) The news that the system retrieved matched the information you wanted to know.
Task Achievement 2 (Response Consistency) The system consistently responded according to the retrieved news.
Speech Emotion Appropriateness The system seemed to vary its emotional state of speech to demonstrate expressiveness

and modify its responses to accommodate the mood of the context.
Engagement Did you have favorable feelings toward the one you were talking to?

Did you feel a sense of familiarity with the one you were talking to?
Did you feel that the system you were talking to understood the mood of contexts?

Table 1: Emotional SDS Evaluation Questionnaire.

Figure 2: Comparison of Evaluation Metrics by System Type.

Metric U p-value Cohen’s d
RAG Evaluation 42.5 0.580 0.301
Task Achievement 1 42.0 0.558 0.206
Task achievement 2 51.0 0.968 0.070
Speech Emotion Appropriateness 1.5 < 0.001 3.070
Engagement 27.5 0.090 0.824
N Turn 26.5 0.073 0.831

Table 2: Statistical Comparison Between Baseline
and Proposed Systems

model pre-trained on LJSpeech instead of emo-
tional TTS.

3.3 Metrics

We create a seven-item questionnaire in Ta-
ble 1, using a 5-point Likert scale (1 = strongly
disagree, 5 = strongly agree). The first item
assesses RAG performance on relevance and
coherence, while the second and third address
task achievement (Walker et al., 1997): system
helpfulness in understanding retrieved news
and consistency of responses. The fourth
item measures speech emotion appropriate-
ness, adapted from empathy scales for dia-
logue systems (Concannon and Tomalin, 2024).
The last three items assess user engagement,
based on Kurata et al.’s questionnaire (Kurata
et al., 2024). We also recorded the number of
SDS turns as an additional engagement indica-
tor (Aoyama et al., 2024).

3.4 Evaluation Procedure

We collect 20 conversation samples by conduct-
ing 10 dialogues with each system. To avoid
bias, emotion tags predicted by the sentiment
analyzer were hidden from the SDS interface.
We test differences in mean scores using Mann-
Whitney U tests (α = .05) due to the small
sample size, and calculate Cohen’s d for effect
sizes (Cohen, 2013). We assess the internal con-
sistency of the three engagement items using
Cronbach’s alpha, which was .860, indicating
substantial reliability; thus, we averaged them
into a single engagement score.

3.5 Results and Discussion

Figure 2 shows the boxplots of human-
judgment scores. The proposed system sig-
nificantly outperformed the baseline in speech
emotion appropriateness with a large effect size
(d = 3.070; 4.100 vs. 1.700), confirming its abil-
ity to control emotions according to context.
Although engagement scores and the number
of turns showed no significant differences, both
had large effect sizes (d = 0.824, 0.831), suggest-
ing that emotional control may promote more
engaging conversations (Concannon and Toma-
lin, 2024). However, the mean engagement
score remained moderate (around 3), possibly
due to abrupt, discrete emotional shifts without
considering prior conversational context. Fi-
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nally, no significant differences were observed
in RAG performance or task achievement, and
both systems scored around 3, indicating room
for improvement in task-goal fulfillment.

4 Conclusion

We presented an emotional SDS that enhances
empathetic interactions in task-oriented news
conversations by combining a sentiment ana-
lyzer with PromptTTS for dynamic emotional
speech generation. Our system integrates
sentiment-driven emotional control within a
prompt-based architecture, improving emotion
appropriateness and engagement without com-
promising task performance. Its modular de-
sign enables easy adaptation to other domains,
supporting broader development of emotionally
aware conversational agents.
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