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Abstract

A language model that can generate utterances
that are appraised as being within a specific
age range of a young child who is beginning
their language learning journey can be useful in
scenarios where child-level language is needed,
for example in virtual avatars, interactions with
individuals who have disabilities, or develop-
mental robotics. In this paper, we focus on an
age range that is not represented in prior work:
emergent speakers. We use the CHILDES
database to train and tune language models of
different parameter sizes using a group rela-
tive policy optimization reinforcement learning
regime. Our goal is to find the most coherent,
yet child-like language model while keeping
the number of parameters to as few as possi-
ble. We evaluate using metrics of coherency,
“toddlerality,” and an evaluation using human
subjects who interact with two robot platforms.
Our experiments show that even small language
models (under 1 billion parameters) can be used
effectively to generate child-like utterances.

1 Introduction

A rich setting of spoken dialogue is the interaction
between children and their caregivers. The primary
and fundamental site of language use is in this child-
caregiver interaction, which is a co-located spoken
dialogue setting (Smith and Gasser, 2005) begin-
ning with first words, short phrases, and simple sen-
tences that later complex syntax and abstract words
build on. Early child speech is often produced in in-
stallments, requiring more dialogue turns to convey
information. In contrast, most language models
(LMs) work on full utterances—not installments—
and have been trained on vast amounts of text, the
majority of which likely comes from sources that
are not written for children specifically, and cer-
tainly not in terms of direct transcriptions of child
utterances.

Because LMs are trained primarily with text, the
data reflects language written by and for people

who are in literate age ranges, roughly 6 years old
or older (the age when U.S. children begin learn-
ing how to read). This is an unfortunate oversight
because language phenomena from child-target
sources can be very insightful and useful. Romero
and Razniewski (2022) showed that child texts
help improve commonsense reasoning in LMs be-
cause child texts don’t assume domain knowledge;
instead, ‘commonsense’ explanations are clearly
stated. An important resource for child-caregiver
interactions is the CHILDES project (MacWhinney,
2000; Sanchez et al., 2019), a dataset of children-
caregiver interactions with annotated transcriptions
of speech as well as some gestures. CHILDES
has been used as a resource for recent work includ-
ing learning about word acquisition (Mahon et al.,
2025), as well as early syntax and multlinguality
(Fitzgerald, 2024). Furthermore, CHILDES has
been used as a resource for pre-training LMs in-
cluding BabyBERTa (Huebner et al., 2021) and for
the BabyLM challenge, showing an increasing in-
terest in compact, effective LMs that are trained
on only 10 or 100 million tokens taken from child-
produced spoken transcriptions.1 One outcome of
the BabyLM challenge was the Babystories model
(Zhao et al., 2023) that showed improvements on
downstream tasks using LMs that are reinforced
with stories written for children. Taken together,
this recent work focusing on child-level LMs shows
that there are benefits to using child-level data.

An LM that can generate utterances finetuned
to match the developmental language patterns of
young children can be useful in scenarios requiring
child-level communication. Applications include
virtual avatars, interactions with individuals who
have disabilities, or developmental robotics. Some
LMs have been trained on transcriptions of child
speech from young, emergent speakers (Zhao et al.,
2023; Malik et al., 2024), but they have not been
evaluated to generate utterances that are age appro-

1babylm.github.io

babylm.github.io
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priate for the youngest range of speakers, and fur-
thermore have not been evaluated in interactive di-
alogue settings. In this paper we make two primary
contributions: (1) we systematically explore how
small LMs can effectively be reinforced on small
amounts of child-level data and be able to generate
utterances that are regarded as being at a specific
child level, with focus on emergent, toddler-level
speech (age 1-3), and (2) construct a LM with as
few parameters and with as little data as neces-
sary to produce child-level dialogue utterances. We
systematize our evaluations using coherency (ex-
plained below), as well as a human evaluation on
two robot platforms in a dialogue setting. Our re-
sults show that our method for reinforcement works
effectively, enabling researchers to access a model
that produces child utterances.

2 Related Work

Small Language Models LMs trained on huge
datasets dominate, but many are turning to smaller
LMs that are tuned to do specific tasks well. Small
LMs that are more child developmentally plausible
are the focus of the BabyLM challenge (Warstadt
et al., 2023; Haga et al., 2024; Hu et al., 2024).
Related work to ours include Zhao et al. (2023), a
small model that was improved by using reinforce-
ment learning on child texts; and Fields and Ken-
nington (2023) and Bunzeck and Zarrieß (2023)
both explore how transformer-based LMs can be
effective, even with fewer than 10 million parame-
ters on discriminative tasks. We follow this line of
research, but instead of discriminative models, we
work towards a harder generative model task that
can produce child-level utterances which could be
used for SDS dialogue.

Child-level Language Models LMs are increas-
ingly used to identify early onset of certain lin-
guistic abilities in children (e.g., determiner-noun
onset (Alhama et al., 2024)). More general-purpose
LMs have been trained on datasets derived from
and designed for children including BabyBERTa
(Huebner et al., 2021) and ChildGPT Romero and
Razniewski (2022), though the latter was trained on
child-targeted texts, not on transcriptions of child
speech. As part of the BabyLM challenge, other
recent work explored just how small transformer-
based LMs could work on small amounts of data
from CHILDES including GPT-wee (Bunzeck and
Zarrieß, 2023) and Electra-Tiny (Fields and Ken-
nington, 2023; Fields et al., 2023). However, these

LMs are mostly discriminative, not generative.

Readability Readability is an area of research
that attempts to automatically determine the ap-
propriate age or grade level a child needs to be in
order to comprehend a given text. For example,
a short sentence I am hungry can be understood
by very young children, while The nomenclature
of academic disciplines requires more knowledge
of abstract words. Approaches to the readability
task include a number of formulae that use specific
features such as number of sentences, average num-
ber of words in each sentence, and comparison to
words on word lists maintained by educators, such
as the Spache (Spache, 1953), Spache-Allen (Allen
et al., 2022), and Flesch-Kincaid formula (Kincaid,
1975). Others have attempted to use LMs coupled
with more linguistically-derived features with vary-
ing degrees of success (Lee et al., 2021). However,
the literature on Readability focuses on children in
their first years of education (Kindergarten through
5th grade in the U.S.), roughly beginning at age 6.
What happens before that–children who are in their
first years of speaking, ages 1-5—is what we focus
on in this paper.

The most closely related to our work is Malik
et al. (2024) controlling the language proficiency
level of LM generation to a specific level, but fo-
cuses on Readability (they used Fleisch-Kincaid to
guide the loss function to fine-tune a LM), whereas
we are interested in children ages 1-3, younger than
the target ages for Readability. Moreover, we are
interested not in what kids are able to read, but
what they are able to say that is age appropriate.

Group Relative Policy Optimization Group
Relative Policy Optimization (GRPO) is a deep
Reinforcement Learning (RL) training regime that
enables fine-tuning of high-capacity models such
as Large Language Models (LLMs) by leverag-
ing reward models to guide learning (Shao et al.,
2024; Ouyang et al., 2022). At each training step,
GRPO uses feedback from the reward model to
compute gradients and update the policy weights,
allowing for stable, preference-aligned optimiza-
tion in high-dimensional action spaces. Unlike
other LM training regimes, GRPO only requires
an input prompt; at each step the model generates
N outputs, which are then scored by the reward
models, and the model weights are updated accord-
ingly.

Creating a robust reward model is critical to the
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Age 0 1 2 3 4 5 6
# Utts 26K 118K 364K 220K 328K 81K 39K

word/utt 1.3 2.6 4.1 5.7 6.3 6.5 7.4

Table 1: Count of utterances for each child age 0-6

success of GRPO. A well-designed reward model
must provide clear, incremental feedback to reli-
ably guide the policy toward desirable behavior.
However, poorly constructed reward models can
suffer from local maxima, where the optimization
process prematurely converges to suboptimal be-
haviors. This issue is particularly common in re-
ward models based on frozen embeddings (e.g.,
BERT-based models), which may not generalize
well or provide smooth reward signals. To address
this, approaches such as Deepseek employ ensem-
bles of reward models, as well as logic-driven or
structural reward functions—such as regex-based
heuristics—to improve signal diversity and reduce
the risk of overfitting to a single flawed objective.

3 Method

Overview Our primary goal in this work is to
understand how humans perceive and interact with
robots that use a language model specifically tuned
to produce utterances within the 1–3 year-old
age range. A secondary focus is to explore and
document the practical methods—specifically, re-
inforcement learning—that can be leveraged to
achieve such child-like language production in
LLMs. While model training details, including
our use of GRPO, are important for reproducibility,
our central interest lies in characterizing the human
response to age-targeted robot speech.

To train an LM that can generate utterances
within our targeted age range (1-3), we use a rein-
forcement learning (RL) regime of group relative
policy optimization (GRPO), following Shao et al.
(2024). As a preliminary step, we designed and
fine-tuned a discriminator model which is to be
used as our primary GRPO reward model (RM).
This discriminator model is tasked with rewarding
the GRPO fine-tuning process to encourage child-
level (main target is 1-3 years of age). We use
the appropriate caregiver questions extracted from
the CHILDES dataset as the prompt inputs for the
GRPO task and we expect the model to respond
with the appropriate child language response. We
explain each aspect of our method below.

Data The CHILDES dataset (MacWhinney,
2000; Sanchez et al., 2019) contains transcribed
utterances of spoken interactions between chil-
dren and their caregivers. Table 1 shows the data
for each age, 1 through 6 years, for a total of
493,638 child utterances between those age ranges.
We removed all additional non-spoken dialogue
CHILDES annotations such as physical actions
done by the child. We also added the preceding
care-giver utterances prior to the child utterance to
help with dialogue training.

The GRPO trainer task uses a set of user prompts
as input, in our case a caregiver question. At each
step, the trainer generates a batch of outputs and
uses a set of reward models to compute the reward
of each output. The GRPO finetunes (specifically,
reinforces) the model to maximize the rewards us-
ing KL divergence. The technique is to create a
well-defined discriminative model which can re-
ward in the direction we choose, such as behave
like a child.

RM-1 The primary RM will reinforce the genera-
tive model to behave as a toddler under the age
of three, we will call it Toddler-BERT. To cre-
ate Toddler-BERT, we fine-tuned a BERT (Kenton
et al., 2017) (HuggingFace bert-base-uncased
model and tokenizer) model using 90% of the data
for fine-tuning and 10% for evaluation. For Toddler-
BERT training, we discard the utterances given by
the caregivers and focus only on the child utter-
ances. We then split the labels into a binary clas-
sification task: everything below 3 years old as
positive label and everything 3 years and older as
the negative label (roughly a 44/56% split). This
is done because we are ultimately interested in the
age range below 3 years, and because 2 is the most
represented age in the data, allowing a model to eas-
ier discriminate between 3 and above. Evaluation
using all ages 1-8 resulted in unreliable accuracies
for using the model in a RL regime (usually <76%)
even for recent models (e.g., DeepSeek-R1-Distill-
Qwen-1.5B), which illustrates that LMs are not
trained on child data.

We fine-tune for 5 epochs (loss function=binary
cross entropy, learning rate=2e-5, weight de-
cay=0.01, batch size=1024, max length=32). This
resulted in an accuracy of 79.85%, which is well
above the most common baseline. We evaluated
other models including those pre-trained on child
data, such as Romero and Razniewski (2022) and
larger models like GPT-2 (Radford et al., 2019), but
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the former had worse accuracy, and while the latter
did have slightly higher accuracy (0.02% relative
improvement), we opt for BERT because it works
nearly as well with far fewer parameters. Examples
of Toddler-BERT score outputs are shown in Figure
6 of the appendix as RM-1.

After running GRPO with Toddler-BERT alone,
we noticed that although the reward value of RM-1
reached >90% thresholds, the actual outputs were
nonsensical and incoherent. As mentioned in prior
work, we expected initial GRPO trained runs to
reach undesired local maxima. To fix this, we will
employ the following steps iteratively until desired
results are achieved.

1. Add or correct RM training data.
2. Add an additional logic based RM eg. Regex

clf
3. Add an additional BERT based RM eg. Co-

herence clf

RM-2 During our initial experiments, we ob-
served that when using Toddler-BERT, our gen-
erative model lost coherency as RM-1 encouraged
something akin to cognitive degradation (i.e., short
utterances that were child-level, but responses to
questions seemed random). This motivated us to
finetune another BERT coherency model. We use
it as a second reward model to stabilize coherency
when finetuning our generative model with GRPO.
We opted to create an additional coherence-based
RM.

To collect the finetuning data for RM-2, we
created a prompt engineering pipeline that takes
batches of 16 parent-child conversation pairs from
CHILDES. We then used Llama-3.3-70B to score
the coherence of the child responses between 0.0
and 1.0.2 We found that batched processing in one
LLM query resulted in better consistency of scores.
The exact prompts for this are in the Appendix.3

We applied similar fine-tuning parameters to
RM-2 as we did to RM-1, except that we ap-
plied soft labels during the training portion.
The model was trained for 5 epochs (loss
function=BCEWithLogitsLoss, learning rate=2e-
5, weight decay=0.01, batch size=150, max
length=96). We introduce a larger max length as

2https://huggingface.co/RedHatAI/Llama-3.
3-70B-Instruct

3A simpler approach would be to collect sentence pairs,
randomizing half of the dataset pairs against each other, and la-
beling them for coherence with 1 and 0, respectively. However,
our current strategy led to more stable GRPO training.

this model needs to support both child and care-
givers utterances as input. Examples of RM-2 score
outputs are shown in Figure 6 of the appendix.

Figure 1: Reward scores given to sentences based of the
distribution of words per sentences in CHILDES.

RM-3 After performing a GRPO training run
with RM-1 and RM-2, we also found it neces-
sary to encourage the model to respond with an
appropriate number of words4 To achieve this, we
constructed a probability mass function (PMF) by
computing Bayesian-based scores for various re-
sponse lengths observed in our dataset. These
scores were then min-max normalized to the range
[0, 1] to ensure consistency. Additionally, we in-
troduced a temperature parameter to control the
sharpness of the distribution, enabling smoother
length reward scores. An example RM-3 output
is shown in Figure 1. To further encourage single-
sentence responses, we applied the following func-
tion: 1

max(1,number_of_punctuations) . Each completion
is split into individual sentences in which then
the number of words in each sentence is com-
puted. Then a normalized PMF score based off the
CHILDES dataset lengths is assigned; this is then
scaled by the penalty function above, encouraging
length appropriate, single-sentence responses.

After training the generative model with all
the previous RMs, we noticed that the genera-
tive model would add in random baby words like
mommy, diaper, ball, etc., even where it was not ap-
propriate. We opted to adjust Toddler-BERT train-
ing data to add a few examples to discourage the
random use of those words.

RM-4 Although at this point the generative
model was mostly good 70% of the time, it was
still not sufficient for human-robot interaction ex-
periments. The model would produce relatively

4RM-1 and RM-2 gave higher rewards to very long utter-
ances, as might be expected as standard generative LLMs tend
to produce long utterances.

https://huggingface.co/RedHatAI/Llama-3.3-70B-Instruct
https://huggingface.co/RedHatAI/Llama-3.3-70B-Instruct
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non-contextual responses such as Do you want to
eat crackers -> Yes and play with train. We take
this as common for a child to assume context in
parent-child interactions. But extreme cases are
not desired during our human-robot interactions
experiments. We believe this was the case due to
poor quality care-giver questions given

Good quality prompts help generate relevant re-
sponses during GRPO training. To filter out helpful
care-giver question utterances, we applied a similar
approach to that of the RM-2 data collector, except
that we prompted the LLM to score the clarity of
the caregivers’ utterance. This would effectively
allow us to extract from the CHILDES dataset clear
questions from the caregiver such as What is your
favorite color? or Do you want to play with blocks?
and filter out off-context questions or random text
such as and he starts jumping! or All three of them?.
Although RM-4 was not used as a reward model
for GRPO, we use it to filter the top 10% helpful
caregiver questions. We found that GRPO trained
more stably as we increased the filter, but for diver-
sity of the dataset, we kept it at 10%. Examples of
RM-4 score outputs are shown in Figure 6 of the
appendix.

Through iterations we found that these reward
models and data filters were sufficient to reach our
desired coherency and child response behavior.

3.1 Chosen LMs

At the time of the study, we found that the Hug-
gingFace SmolLM2 as good candidates due to
their small size and high benchmark performance
compared to models of similar sizes. The mod-
els were released with parameters in increments
of 135M, 360M, and 1.7B which allows us to ap-
ply the same fine-tuning techniques consistently on
different model sizes, which we explain below.

4 Experiment

Our experiment has two Steps: (1) use pre-trained
LMs and determine the best, yet smallest architec-
ture that we can use to effectively generate child
utterances, and (2) using the best model size from
(1) and pre-train a custom model using only child
data. We explain each step in more detail.

Figure 2: RM-1 and RM-2 counter balance each other.
Giving too much weight to RM-1 (childish) can lead to
non-coherent model whereas giving too much weight to
RM-2 (coherence) can make the training process fail to
allow the model to reduce cognitive behavior that of a
child. We omit RM-3 results to remove clutter, however
all models converged to 100% score with RM-3 due to
its simplicity.

4.1 Step 1: Determining Best Model Using
GRPO with Standard and Child-directed
Utterances on Pre-trained LMs

In this step of our experiment, GRPO with Standard
and Child-directed Utterances using Pre-trained
LMs is designed to find the smallest model size
needed for an LM to respond to a caregivers’ ques-
tion with coherent toddler-like utterance. At the
time of the study there was no known language
model designed to behave as a toddler. Thus for
this experiment, we tune SmolLM2 models using
GRPO with RM-1, RM-2, and RM-3 (explained
above).

We use our GRPO RL regime introduced in Shao
et al. (2024) to fine-tune SmolLM2 to produce
child-level output with the following GRPO pa-
rameters: num_of_generations=8, batch_size=200,
warmup_ratio=.1, max_completion_length=96,
max_prompt_length=96, dtype=bfloat16, reward-
weights=1.0, 0.2, 0.5 to RM-1, RM-2, RM-3
respectively. To allow for more efficient and
smoother training, we used PEFT LoRa with the
following parameters: rank=64, lora-alpha=64,
target-module=[q,k,v,o,gate,up,down]. We ran this
for 2000 steps, saving every 250th checkpoint.

Step 1 Results Figure 2 shows the training pro-
cess across the 2000 steps for each of the pre-
trained SmolLM models (135M, 350M, 1.7B pa-
rameters, respectively; for the moment, we ignore
toddler-LM). Each model’s toddler (i.e., child-level
generated utterances) and coherence values change
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over time; the objective is for both to be as high
as possible, but since they tend to have counter
objectives, we are looking for an optimal point
where both are balanced. As expected, larger mod-
els become more child-like in their outputs sooner
with higher coherence to begin with, but we also
notice that the smallest model (135M parameters)
reaches the highest child-level/toddler utterances,
albeit with a lower coherence. The second smallest
model (350M parameters) reaches a nice balance
between the two, though the child-level utterance
generation remains worse than the smaller model.
These results inform us as to which architecture we
should use for Step 2: For our custom, pre-trained
model on child data, we opt for a model that is
somewhere between the smallest and the second
smallest models, which we focus on in the next
section.

4.2 Step 2: Pre-training a Generative,
child-level LM

In this Step, we develop a LM that has not been
previously pre-trained; i.e., it begins from random
parameters. The goal of this step is to examine
how a LM trained exclusively on child-directed
transcribed speech behaves compared to a model
that has been pre-trained on large amounts of text
containing adult-targeted examples, as we did in
Step 1.

Task & Procedure We use data exclusively from
CHILDES because that represents the target ages.5

Given the limitations of our dataset size (approx-
imately 14 million tokens from CHILDES after
filtering comparing to 2 trillion token used by
SmolLm-135M), we designed a more efficient LM
architecture optimized for child-level conversation
in only the English language rather than general
knowledge. Key modifications include:

• reducing the vocabulary size to 8,196 tokens
• using a lower-case only tokenizer
• reducing max token length to a size of 256

Taking what we learned in Step 1, we initialized
the model parameters to be sized between SmolLM-
135M and SmolLM-360M with some key modifi-
cations that are itemized in Table 2.

5We considered using the BabyLM datasets for pre-training
(Warstadt et al., 2023; Haga et al., 2024; Hu et al., 2024),
which contain data from CHILDES, but some data that is out
of the age range might also be included.

Parameter Value
hidden_size 672
intermediate_size 1809
max_position_embeddings 256
num_attention_heads 12
num_hidden_layers 31
num_key_value_heads 4
rms_norm_eps 1.0e-05
rope_interleaved false
rope_scaling null
rope_theta 10000.0
tie_word_embeddings true
vocab_size 8192

Table 2: Model Parameters for Experiment 2

We employed a three-stage training approach to
develop our child-level language model pre-trained
on CHILDES data:

Stage 1: Pre-training We used the Nanotron
library with similar parameters to those used in
SmolLM training. This produced an LM with basic
language syntactic understanding. Key details of
this stage include:

• Training continued until loss convergence just
above 1.0

• Completed 25,000 training steps (approxi-
mately 64 epochs)

• Learning rate: 0.0025

Stage 2: Chat SFT After pre-training, our next
goal was to train the model to learn to interact in a
chat setting (which came for free in the pre-trained
SmolLM models in Step 1). We modified the model
and token configuration to adapt the same chat
template and special tokens as SmolLM2 Instruct.
We leveraged the unsloth library which had useful
features that allowed us to train on responses only,
eliminating the need to train the model to ask an
adult question.

To arrive at the data we used at this stage, we
selected the top N% most coherent child and parent
sentences (using high scores from both the RM-2
and RM-4 reward models from Step 1). To en-
sure gradual adaptation to the chat format, we im-
plemented a curriculum with progressively higher
quality examples and decreasing learning rates, de-
picted in Table 3.

These parameters were carefully tuned until we
consistently achieved a loss of 0.45, when the
model started yielding coherent chat responses.
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Subset Quality Learning Rate Epochs
Top 10% 9e-4 2
Top 5% 8e-4 14
Top 2.5% 7e-4 7
Top 1.25% 6e-4 3

Table 3: Training Stage 2 Settings by Subset Quality

Stage 3: GRPO Optimization In the third and fi-
nal stage, we applied the GRPO RL approach from
Step 1 with minor modifications. We reduced the
learning rate to 1e-5 and doubled the LoRa rank.
We trained for 1000 steps and through manual anal-
ysis, we selected the checkpoint which yielded the
best results for coherency and child-level ‘toddler’
utterance generation. Interestingly, while GRPO
did not dramatically improve the model’s perfor-
mance as in Step 1, it was able to improve the
model beyond Stage 2.

Metrics & Baselines The challenge with our
very young child-level model (2-3 years of age)
is meant to produce outputs that have limited vo-
cabulary and syntactic structure. This means that
using standard benchmarks for evaluating our LM
is not applicable here. For our custom metric, we
use RM-4 to extract the 1000 most useful caregiver
questions from CHILDES. We then use the models
we created in Step 1 and Step 2 from section 4 of
this paper to generate simulated responses for every
question. We then constructed an LLM prompt to
score the coherency of the responses between 1-5
for every model and including the score of the orig-
inal child response. We use ChatGPT 4.16 to score
the models using the a prompt shown in Figure 5 of
the appendix. These metrics are sufficient for this
experiment, but we further evaluate with human
participants, described in Section 5.

Results Figure 2 shows how our LM (termed
toddler-LM in the figure, pre-trained on CHILDES
data and reinforced through Stages 1-3 compares
with the pre-trained SmolLM models. While not
as effective in terms of child-level utterance gen-
eration (due likely to the vastly smaller amount of
training data), it nonetheless results in high coher-
ence, which is a reasonable tradeoff.

Table 4 shows the accuracy results of our evalua-
tion on 1000 caregiver-child question-answer pairs.
Though we used ChatGPT to score if responses

6https://platform.openai.com/docs/models/
gpt-4.1

Model Accuracy
Gold 0.641

SmolLM-1.7B 0.643
SmolLM-350M 0.733
SmolLM-135M 0.729

Ours 0.740

Table 4: 1000 Questions model accuracies.

were coherent answers, this result gives us an in-
sight into the overall capability of the models to
answer questions coherently. We see that the best
pre-trained model that we reinforced through our
GRPO regime is SmolLM-350M, but the best over-
all performing model is our 155M parameter model
that was pre-trained on CHILDES data. This is a
very positive result, as our smaller model works
better according to this metric, but more evaluation
is needed to answer if the model can be used in
an interactive dialogue task. In the following sec-
tion, we describe a human evaluating that compares
our model with the SmolLM-350M model, the two
highest-performing models.

5 Human Evaluation

Our offline metrics show that our child-level gen-
erative models are coherent and speak at a toddler-
level age. To further evaluate both models, we
performed a human evaluation.

Robots & System Because humans assign adult-
level expectations to dialogue systems that can
speak (Plane et al., 2018), it is important that we
evaluate models on multiple robot platforms, where
one platform is perceived as child-age, and another
that appears older. We opt for the Cozmo robot
which has been shown to have child-level quali-
ties including morphology and voice (Plane et al.,
2018). For the ‘older’ robot, we opt for Misty II
since it is much larger than Cozmo, but still smaller
than a human toddler. We use the default voice for
both Misty II and Cozmo.

We used the rrSDS system for building dialogue
systems on robotic platforms, which is built on
Retico (Michael and Möller, 2019; Kennington
et al., 2020). Our system consisted of a USB mi-
crophone, Whisper automatic speech recognition
(ASR) (Radford et al., 2022), an rrSDS/Retico LM
module that takes ASR transcriptions as text input
and returns a response that is then uttered on the
robot (each robot has a rrSDS control module). We
test two models that resulted from the above Ex-

https://platform.openai.com/docs/models/gpt-4.1
https://platform.openai.com/docs/models/gpt-4.1
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Figure 3: Depiction of our dialogue system that enables
human participants to interact with a robot that uses a
child-level LM to generate utterances.

periment, SmolLM-350M and our toddler model
(155M parameters, pre-trained on CHILDES). The
system is depicted in Figure 3. All modules that
produce output are logged into a logging module
for later analysis.

Task & Procedure We recruited 19 participants
to come into our lab and interact with our robots.
Each participant interacted with two of four possi-
ble robot+model pairs assigned at random:

• Cozmo + SmolLM-child (10 participants)
• Cozmo + Ours-child (6 participants)7

• Misty II + SmolLM-child (11 participants)
• Misty II + Ours-child (8 participants)

The robots were set on a table and participants
were seated near the table so they could be face-
to-face with the robot. We programmed the robots
to perform small random movements to ensure to
the participants that the robots were still function-
ing even when not speaking. Moreover, constant,
small random movements are closer to what hu-
mans expect from each other, children in particular.
After signing an informed consent,8 participants
were tasked with speaking with the robot. We made
sure that participants understood that they needed
to help drive the conversation by asking questions,
but we did not prime them to assume that the robot
would act a certain age. After interacting with the
robot for 15-20 minutes, they filled out a survey.

Metrics We used the standard human-robot in-
teraction Godspeed Questionnaire (Bartneck et al.,
2009) which consists of 21 pairs of contrasting
characteristics, each with a 5-point Likert scale
between them. Some examples below:

• anthropomorphism (e.g., artificial vs. lifelike)
7The discrepancy in participants was partially a result of

infrastructure failure with the Cozmo robot
8This study was approved by IRB.

human robot human robot
Robot+model vocab vocab AoA AoA

Cozmo+SmolLM 3767 441 4.49 3.64
Cozmo+Ours 624 324 4.34 4.03

Misty+SmolLM 4219 450 4.38 3.8
Misty+Ours 758 368 4.34 4.02

Table 5: Results of objective measures.

• likability (e.g., unfriendly vs. friendly)
• intelligence (e.g., incompetent vs. competent)
• interpretabilitiy (e.g., confusing vs. clear)

Following Plane et al. (2018), in addition to these
questions, we also ask participants about their per-
ceptions of the robots’ age and grade level. We also
asked that the participants rate coherence (specifi-
cally, if the responses ‘made sense’) on a scale of
1-5 (5=very coherent). We also include average
age-of-acquisition (AoA) values for words spoken
by participants and generated by the models. The
AoA dataset is a list of words and the estimated
age when those words are learned (for example,
puppy is learned at 3 years four months on average,
whereas quadratic is learned at 14 years old).

In addition to questionnaires, we analyze the logs
to determine several objective measures: the vocab-
ulary of the participants and each robot+model,
and the average AoA value for each robot+model
pair. We hypothesize that the vocabulary of the
human participants will be larger than that of the
robot+model pairs, that the AoA values will be
higher for the human-participant words compared
to the robot+model words, and we anticipate that
our model will be regarded as younger and more
coherent than SmolLM-350.

Results Table 5 shows the objective results from
the log files. We see overall that the vocabulary
of the participants is much higher than that of the
robots for all models, but particularly for our model,
which is what we expect: children do not have as
big of a vocabulary as adults. However, we can
see from the average AoA scores that the partici-
pants did talk at a more child-friendly level to the
robots, but overall the participants had higher av-
erage AoA scores than the robots. However, the
SmolLM model had an overall average lower AoA
score. This is somewhat unexpected, as our model
was trained only on child data, but it does illustrate
the effectiveness of the fine-tuning and RL regime
for both models.

Table 6 shows a selection of results for sur-
vey questions (results for all questions can be
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Question mean std
Robot/Model: Cozmo SmolLM

age 3.4 1.57
grade Pre/Kind N/A

coherence 3.0 0.82
artific/lifelike 3.3 0.82

dislike/like 3.6 0.97
unintel/intelligent 3.11 0.78

Robot/Model: Misty SmolLM
age 4.27 3.22

grade Pre/Kind N/A
coherence 2.45 0.52

artific/lifelike 3.0 0.77
dislike/like 3.0 0.77

unintel/intelligent 2.82 0.4
Robot/Model: Cozmo Ours

age 3.2 1.1
grade Pre/Kind N/A

coherence 3.33 0.82
artific/lifelike 3.5 0.55

dislike/like 3.8 0.84
unintel/intelligent 3.17 0.47

Robot/Model: Misty Ours
age 3.5 2.38

grade Pre/Kind N/A
coherence 2.12 0.64

artific/lifelike 1.88 0.64
dislike/like 2.75 1.04

unintel/intelligent 3.12 0.64

Table 6: Selection of Godspeed and additional question
responses mean/standard deviations of Likert 1-5 scales.
Higher Godspeed responses denote positive attributes
(e.g., intelligence vs. unintelligence).

seen in the Appendix). We see that partici-
pants rated our model overall as closer to the tar-
get age (3.2 years for Cozmo and 3.5 years for
Misty). All robot+model pairs were regarded as
Pre-Kindergarten/Kindergarten aged (though Misty
was sometimes rated higher; 2nd grade for exam-
ple). There was no real difference in coherence
between models, though participants rated Cozmo
on average as higher than Misty. Cozmo is over-
all regarded by participants as more life-like, lik-
able, and intelligent than Misty, despite housing the
same models. This is an interesting result: humans
likely expected Misty to act more mature/older, but
the child-like speaking of Cozmo matched expecta-
tions of the participants.

Analysis & Discussion Even though the
SmolLM model showed lower overall AoA levels
for its vocabulary compared to our model, some
examples illustrate why a LM pre-trained on
child-level data might be preferable. In more than
one case, the SmolLM model generated utterances
that the robots spoke which were well above what
a 2-3 year old child would be expected to be able
to talk about (e.g., the participant mentioned cars
and it responded with an utterance about Formula
1 racing). The model also spoke Spanish when
asked about languages other than English; which
is not a negative thing, but the model wasn’t tuned
to speak at a child-level in Spanish. We leave
multilingual evaluation for future work.

6 Conclusion

In this paper, we modeled, trained, and evaluated
child-level LMs. We evaluated multiple architec-
tures using existing, pre-trained SmolLM models,
and from that we determined the smallest architec-
ture to pre-train a custom model on child-level data
from CHILDES. Our training reinforced models
to speak at a young child level (around 3 years of
age), younger than prior models in the literature.
Our human evaluations using the models on two
robot platforms further illustrate their usefulness
in human-robot interaction settings, but more im-
portantly provided additional evaluation about the
perceived age, coherency, and competence of the
models. The results suggest that the small model
trained only on child-level data is comparable to
a larger model trained on much larger amounts
of adult-level text, though using an existing pre-
trained model and tuning it using our method to
speak at child-level can be just as effective, albeit
using a larger model.

For future work, we will incorporate the child-
level LM into a human-robot interaction robot task
where the robot and the human collaborate and the
robot must learn from the human as it interacts.
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A Appendix

A.1 Godspeed Question mean/std responses
for Cozmo+SmolLM2

Godspeed Question mean std
fake/natural 3.00 0.82
machinelike/humanlike 2.50 0.53
artificial/lifelike 3.30 0.82
dead/alive 2.50 0.97
stagnant/lively 3.62 1.19
mechanical/organic 3.40 0.97
inert/interactive 2.33 0.71
apathetic/responsive 3.80 0.42
dislike/like 3.60 0.97
unfriendly/friendly 3.89 0.78
unkind/kind 4.20 0.63
unpleasant/pleasant 4.00 0.82
awful/nice 4.00 0.82
incompetetent/competent 4.00 0.67
ignorant/knowledgeable 2.50 1.18
irresponsible/responsible 2.70 1.06
unintelliget/intelligent 3.11 0.78
foolish/sensible 2.90 0.88
anxious/relaxed 2.89 1.05

A.2 Godspeed Question mean/std responses
for Cozmo+Ours

Godspeed Question mean std
fake/natural 3.33 0.82
machinelike/humanlike 2.83 0.75
artificial/lifelike 3.50 0.55
dead/alive 2.50 0.84
stagnant/lively 3.50 0.55
mechanical/organic 3.67 1.03
inert/interactive 2.67 1.37
apathetic/responsive 4.00 0.63
dislike/like 3.80 0.84
unfriendly/friendly 4.00 0.63
unkind/kind 3.83 0.75
unpleasant/pleasant 3.67 0.82
awful/nice 3.50 1.05
incompetetent/competent 3.67 0.82
ignorant/knowledgeable 3.33 1.03
irresponsible/responsible 2.83 0.75
unintelliget/intelligent 3.17 0.41
foolish/sensible 3.17 0.75
anxious/relaxed 3.17 0.41
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A.3 Godspeed Question mean/std responses
for Misty+SmolLM2

Godspeed Question mean std
fake/natural 2.45 0.52
machinelike/humanlike 2.00 0.63
artificial/lifelike 3.00 0.77
dead/alive 2.36 0.67
stagnant/lively 3.18 0.87
mechanical/organic 2.91 1.04
inert/interactive 1.82 0.60
apathetic/responsive 3.45 0.82
dislike/like 3.00 0.77
unfriendly/friendly 3.27 0.79
unkind/kind 3.55 0.69
unpleasant/pleasant 3.55 0.69
awful/nice 3.64 0.67
incompetetent/competent 3.73 0.65
ignorant/knowledgeable 2.64 1.03
irresponsible/responsible 2.73 0.65
unintelliget/intelligent 2.82 0.40
foolish/sensible 2.82 0.87
anxious/relaxed 3.00 0.77

A.4 Godspeed Question mean/std responses
for Misty+Ours

Godspeed Question mean std
fake/natural 2.12 0.64
machinelike/humanlike 1.75 0.71
artificial/lifelike 1.88 0.64
dead/alive 1.75 0.46
stagnant/lively 2.88 0.83
mechanical/organic 2.88 0.64
inert/interactive 2.00 0.93
apathetic/responsive 3.38 0.74
dislike/like 2.75 1.04
unfriendly/friendly 2.88 0.64
unkind/kind 3.38 1.06
unpleasant/pleasant 3.00 0.93
awful/nice 2.75 0.89
incompetetent/competent 3.25 0.71
ignorant/knowledgeable 2.38 1.06
irresponsible/responsible 2.12 0.99
unintelliget/intelligent 3.12 0.64
foolish/sensible 2.12 0.83
anxious/relaxed 2.62 0.74

A.5 Prompt examples

Figure 4: Prompt used to collect soft labels for Reward
Model 3 and 4.

Figure 5: Prompts used to collect score coherency of
the Experiment 1 models.
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Figure 6: Output examples from RM-1, RM-2, and
SmolLM-350M-GRPO


