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Abstract

One essential function of dialogue systems is
the ability to ask questions and acquire nec-
essary information from the user through di-
alogue. To avoid degrading user engagement
through repetitive questioning, the number of
such questions should be kept low. In this
study, we cast knowledge acquisition through
dialogue as stream-based active learning, exem-
plified by the segmentation of user utterances
containing novel words. In stream-based active
learning, data instances are presented sequen-
tially, and the system selects an action for each
instance based on an acquisition function that
determines whether to request the correct la-
bels from the oracle (in this case, the user). To
improve the efficiency of training the acquisi-
tion function via reinforcement learning, we
introduce two extensions: (1) a new action that
performs semi-supervised learning, and (2) a
state representation that takes the remaining
budget into account. Our simulation-based ex-
periments suggested that these two extensions
have the potential to improve word segmenta-
tion performance with fewer questions for the
user.

1 Introduction

Dialogue systems need the ability to ask ques-
tions and acquire necessary information from users
through dialogue. For example, large language
models (LLMs) do not necessarily cover local ex-
pressions, such as nicknames used among friends
and family or abbreviations commonly used in
schools or local communities. To enable natural
and casual conversations with users, spoken dia-
logue systems must be able to handle these terms,
including their spellings and pronunciations.

A key challenge lies in avoiding excessive or
repetitive questions to maintain user engagement.
While questioning the user is a reasonable strategy
for acquiring such information (Li et al., 2017),
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Figure 1: Example of knowledge acquisition process

general users—unlike crowdworkers—do not an-
ticipate being asked similar or repetitive questions
(Hancock et al., 2019). Therefore, the system
should be carefully designed to minimize negative
impressions and enhance overall user experience.
Repeatedly asking the same type of question has
been shown to degrade the user experience (Ko-
matani et al., 2022).

In this study, we formulate knowledge acquisi-
tion through dialogue as stream-based active learn-
ing (Tong and Koller, 2002; Settles, 2009), using
the segmentation of user utterances as an example
task. In active learning, the system selects instances
that are expected to be particularly informative for
improving a machine learning classifier (within a
limited query budget) and obtains their reference la-
bels from an oracle for supervised training. Stream-
based active learning is a form of active learning
in which data instances are presented sequentially,
and at each step, the system makes a binary deci-
sion, i.e., whether to request the reference label or
not, on the basis of an acquisition function. This
corresponds to deciding whether to ask the user
about the correct segmentation of a given utterance.
Figure 1 illustrates such an interaction as an exam-
ple. Previous research has shown that acquisition
functions in stream-based active learning can be op-
timized using reinforcement learning (Fang et al.,
2017). Note that, while we assume the user can act
as an oracle and provide the correct segmentation
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results, it remains challenging to accurately obtain
such results from diverse user responses.

To improve the training efficiency of the acquisi-
tion function through reinforcement learning, we
introduce two extensions. First, we add a new ac-
tion, which we call self-learning, corresponding to
semi-supervised learning: the system treats the cur-
rent segmentation result as correct without query-
ing the user, and utilizes it for training. Second,
we incorporate the remaining query budget into
the state representation. This enables the system
to learn a strategy such as refraining from self-
learning when the segmentation model is still un-
reliable, and relying on it more actively once the
model has been sufficiently trained.

The contributions of this work are twofold:

* We formulate knowledge acquisition through
dialogue as stream-based active learning, us-
ing the segmentation of user utterances that
may contain unknown (novel) words as an
example task (see Section 3).

* We propose reinforcement learning extensions
to efficiently train acquisition functions in
stream-based active learning, and provide pre-
liminary evidence of their potential through
simulation-based experiments (see Section 4).

2 Related Work

Life-long learning is an approach that enables a
system to continually improve its performance (Sil-
ver et al., 2013; Chen and Liu, 2018). As part of
this, research has explored acquiring factual knowl-
edge through dialogue to overcome the limitations
of fixed knowledge bases (Mazumder et al., 2019).
Further challenges such as the handling of incor-
rect knowledge and the revision of previously ac-
quired knowledge have also been discussed (Liu
and Mazumder, 2021). Exploiting user utterances
or feedback for supervision in dialogue has also
been proposed. For example, a chatbot may extract
new training examples from dialogue and solicit
user feedback (Ono et al., 2017; Hancock et al.,
2019).

In robotics, dialogue has been used as a means
for robots to acquire new concepts such as object
names or spatial terms (Taniguchi et al., 2016).
An embodied robot may encounter novel objects,
as well as unfamiliar place names and action con-
cepts, in open-world settings. For example, robots
have been trained to incrementally improve their

language understanding and concept grounding
through interaction with humans (Thomason et al.,
2019), and to learn through clarification and active
learning queries (Padmakumar and Mooney, 2021).
One recent attempt also explores how a robot can
learn unknown object names, locations, and actions
through situated dialogue (Kane et al., 2022).

In neural response generation, techniques such
as Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) can incorporate a new word that ap-
pears during a dialogue into the generated text;
however, similar to the robotics studies discussed
above, our goal is to understand and acquire such
knowledge in a way that allows it to be reused.
While several studies have focused on storing user
preferences or profiles during dialogue for the pur-
pose of personalization (Cho et al., 2022; Chen
et al., 2024), our objective is fundamentally differ-
ent.

The framework of “asking intelligently” can
be applied to lexical acquisition (Komatani et al.,
2022), estimation of user satisfaction (Hancock
et al., 2019), and user sentiment estimation (Karn-
janapatchara et al., 2024). Furthermore, rather than
selecting questions in active learning solely based
on fixed uncertainty metrics, our framework learns
an acquisition function via reinforcement learning,
enabling the system to flexibly decide whether to
ask a question by taking future rewards into ac-
count.

User impression given by a system’s question
is important. It is necessary to consider how the
question will be perceived by the user when it is
asked, for example, repeated explicit questions can
quickly become annoying. Studies that address the
impression of different types of system questions
include, for example, (Komatani et al., 2022). Ide-
ally, a system should balance the expected utility of
asking a question with the impression it conveys.

3 Formulation

3.1 Process of Knowledge Acquisition through
Dialogue

We assume that the knowledge acquisition through
dialogue generally consists of three processes: 1)
question, 2) ask, and 3) understand. First, the sys-
tem should question what it could not understand
in a user utterance given the dialogue context and
the system knowledge. Second, the system should
ask the user about it if necessary. Then, the system
should understand what the user explained, which
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Figure 2: MDP in our scenario

results in knowledge update. In addition, a small
number of confirmations is better because frequent
questions will degrade user engagement and inter-
rupt the conversation.

The process can be conceptually written as fol-
lows:

a < action(z,¢,h,c), and (D
¢ <« update(¢,z,y(a)lh) if a = “ask”, (2)

where = denotes a user utterance, and h and ¢
represent dialogue context and the system’s cur-
rent knowledge including model parameters, re-
spectively. Note that the number of confirmation
requests, ¢, in the dialogue is explicitly denoted
here. The action(-) function is equivalent to the
decision making function or acquisition function
that determines whether or not to request the cor-
rect answer from the user for the understanding the
utterance z. The 1) question process is included
in this function. If the action of “ask” is decided,
the 2) ask process is executed by the system. y(a)
denotes the user’s response that includes a new
correct knowledge for the system after the request
a. The update(-) function reorganizes the current
knowledge according to z and its correct informa-
tive response y(a), which means the completion of
the 3) understand process.

Our problem is how to design the action(-) and
update(-) functions according to actual tasks. Ac-
tive learning and reinforcement learning are im-
portant concepts and techniques to design or train
the function using data. Since the update function
usually boils down to a specific parameter update
technique (e.g., the gradient descent method), the
action function is more important for the knowl-
edge acquisition process.

3.2 Stream-based Active Learning

3.2.1 Framework

We cast our knowledge acquisition process into the
stream-based active learning problem (Atlas et al.,
1989; Mnih et al., 2015; Fang et al., 2017). In
this problem, the system takes unlabeled instances
(data) in a stream and decides whether each in-
stance should be manually annotated or not (label-
ing or skip). Here, the number of annotations is
restricted by a budget variable that promotes the
efficient annotation and learning. In our process,
the unlabeled instance corresponds to the user ut-
terance x, and the manual annotation corresponds
to the answer from the user, y(a), after the sys-
tem takes the ask action, a = “ask”. The budget
variable also corresponds to the number of con-
firmations, c. The reinforcement learning frame-
work is applied to learn the decision policy, i.e., the
action(+) function in Eq.(1), based on data.

The formulation of stream-based active learn-
ing is based on a Markov Decision process (MDP)
with budget constraint following the explanation
of (Fang et al., 2017). This process is described
by a state set S, action set A, reward function R,
state transition probability P, and budget B. At the
t-th turn, the user’s utterance, the system’s action,
the current state, and the transition probability are
represented by 4, a; € A, s; € S, and P(s¢41]|5t),
respectively. The reward function is denoted by
R(st,at). The action a; usually takes a binary
value: a; = 1 means that the instance x; is cor-
rectly labeled as y; and is added to labeled data
according to the policy 7, and a; = 0 means the
system does nothing. The current model py is up-
dated by the labeled paired data that have already
been obtained.

Figure 2 illustrates the MDP in our scenario.
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Figure 3: Unknown word acquisition scenario: decision making process.

The process starts at the initial state (root), and the
initial model py with the parameter set ¢g. Given
the first user’s utterance x1, the system decides
whether this utterance should be labeled or not
according to the policy 7, e.g. a; ~ (¢, x¢).
Here, ¢, represents a model parameter set after k
updates. If the drawn action a; takes 1, the correct
label y; is obtained. This process continues until
the budget or instance is exhausted.

3.2.2 Deep Q-learning Implementation

The deep Q-learning enables us to estimate a policy
function using deep neural network models. DQN
is used to predict a Q-value function, Q™ (s, a), that
estimates the value of each action at state s in the
Q-learning framework. It plays the role of action(-)
in Eq.(1).

The cost function of the DQN used in (Mnih
et al., 2015; Fang et al., 2017) is formulated as

L(¢) = Eg s lly(r,s') — Q(s,a; ¢)||],and (3)
y(r,s') = r+ymaxQ(s', a’s o), 4)

where v denotes a discount rate for future rewards
in the reinforcement leaning, and r and s’ repre-
sent a reward and the next state of s, respectively.
The expectation operator, [, is taken over the mini-
batch data drawn from the experience replay mem-
ory where each transition tuple (s,a,r,s’) in an
episode is stored. We assume here that the norm
|| - || is a smoothed L1 norm (Girshick, 2015) in-
stead of an L2 norm.

We used the same intermediate reward utilized
in (Fang et al., 2017). It is defined as the difference
of the model performance before/after taking each
action, i.e.,

r = Acc(¢') — Acc(gp_1), ®)

where Acc(+) is a function that calculates the per-
formance of the model with a given parameter set.

¢’ is equal to ¢p_1 if the skip action is selected,
otherwise ¢. If the selected action impacts the
performance improvement, a positive reward is ob-
tained. The validation set is usually utilized to
measure the performance.

4 Proposed Method

4.1 Word Segmentation Task toward

Unknown-word Acquisition

Our scenario is an unknown word acquisition
through spoken dialogue, and we focus on the word
segmentation (WS) task as shown in Fig. 3. Here,
the unknown words mean that they are not in the
system’s word-dictionary. In spoken dialogues, the
recognition process of unknown words requires syl-
lable recognition and WS processes because the
system can recognize only the pronunciation of
unknown words, not their spelling. The syllable
recognition converts the audio signal into syllable
sequences, and the syllable sequences are then seg-
mented into words. Since the performance of WS
directly affects the recognition of unknown words,
we assume that the correct syllable recognition re-
sults are given in this paper.

We link this WS task to the stream-based active
learning framework. The system segments the user
utterance x into words using the WS model py with
a parameter set ¢. If the system is not confident in
the segmentation results caused by the existence
of unknown words, it asks the user for the correct
segmentation. Since we assume that the user re-
sponse y(a) corresponds to a correct label for z,
the system can update the parameter of the WS
model using the paired data (z, y), and it can also
add the unknown words to its word-dictionary.
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Figure 4: Overview of proposed method

4.2 New Action: Self-learning using
Pseudo-labeling

We introduce a pseudo-annotation (labeling) (Lee,
2013; Arazo et al., 2020) into the set of actions A
in the stream-based active learning. The pseudo-
labeling means that the estimated label by the cur-
rent model p; 4 is used as if it is a true label in
the model update. Therefore, we can perform
self-learning (semi-supervised learning) using this
pseudo-label to improve the model performance
without consuming any budget, as illustrated on
the right side of Fig. 4. Although this enables us to
improve the training efficiency, inaccurate labels
will degrade the model performance. This disad-
vantage is tackled in Section 4.3.

We extend our action to include three actions:
skip (a; = 0), labeling (a; = 1), and pseudo-
labeling (a; = 2). If the action of pseudo-labeling
is drawn in MDP, the pseudo label ¢, is estimated
by

i = argmax,, pg, (y|2t). (6)

The actual model is explained in Section 4.4. The
structure of DQN is also modified to predict three
kinds of Q-values.

We explicitly restrict a state that allows the
pseudo-labeling. This is because the pseudo-
labeling is sometimes wrong, especially in cases
where the true unknown-word is uttered due to
over-/under-segmentation. Therefore, we permit
the pseudo-labeling action only if there are seg-
mented words that are not included in the word-
dictionary.

4.3 New State: Remaining Budget Rate

The remaining budget is also added to the state
feature to overcome the disadvantage of pseudo-
annotation, as is illustrated in the center of Fig. 4.
The action of pseudo-annotation in the early stage
of model training usually degrades the performance
due to estimation errors caused by insufficient train-
ing. Since the remaining budget could be a clue to

distinguish the degree of model training, this new
state is expected to promote pseudo-annotation in
the later stage of training.

The actual state feature is the ratio of the current
remaining budget and the maximum (initial) budget.
It takes 1 at the start of learning and O at the end of
learning.

4.4 WS Model and Other Settings

The WS model estimates the boundaries of words
from a given syllabogram sequence ci.; =
[c1,...,cr] of length L. The boundaries are rep-
resented by a sequence of binary indicators z1.7, =
[21,...,z1]. Here, z; (I = 1,..., L) takes 1 if the
word boundary exists after the corresponding syl-
labogram c¢;; otherwise, 0. The syllable sequence
is divided into words according to the sequence of
boundary indicators.

The sequence of indicators z1.y, is estimated by
evaluating the following posterior probability.

p(z1:L|c1.L; Or), @)

where ¢, is a model parameter set. We can obtain
N-best hypotheses by applying beam search or ap-
proximating posterior probability based on random
sampling.

The confidence score of WS is used as a basic
state feature of MDP. Since an estimation result
with a low confidence score is basically suspicious,
its correct label is expected to improve the model
performance. This feature stems from the uncer-
tainty sampling (Lewis and Gale, 1994). We cal-
culate the confidence score by approximating the
posterior probability based on random sampling
from the model. The log score was actually used
as the state feature.

We utilized sentence accuracy in terms of word
boundaries as the Acc(-) function in Eq.(5). It rep-
resents the ratio of correctly segmented sentences
(utterances) to the total number of sentences in a
given dataset. This function implicitly gives greater
weight to shorter sentences during training, as they
contain fewer words and thus have a lower risk
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Table 1: Statistics of dialogue corpus.

Train Valid 1 TSt
-train -eval

No. of utterances 192 65 192 192
No. of uttrs. with 104 37 13 115
unknown words

of mis-segmentation. This serves as a strategy to
reliably understand simple utterances from users.

5 Experimental Setting
5.1 Dataset

In our experiments, we used the transcriptions of
the utterances usually utilized for ASR model train-
ing as the training set for the WS model. The
unit of word was the Japanese short unit anno-
tated in the CSJ core set (Maekawa et al., 2000).
These transcriptions included 380,872 utterances
and 7,402,147 word tokens. The number of char-
acters in the Katakana format was 14,789,778, and
the vocabulary size was 53,866.

The dataset used for stream-based active learning
consists of four datasets: 1) a training set (train), 2)
a validation set (valid), 3) a test training set (test-
train), and 4) a test set (test-eval). Sets 1. and 2
were used for the reinforcement learning process
(training of DQN), and Sets 3 and 4 were used for
the evaluation of the active learning process and
the performance evaluation of the WS model using
the trained DQN. In detail, the valid set was used
to evaluate the reward for DQN. We randomly split
the following spoken dialogue corpus into train,
valid, test-train and test-eval sets at the ratio of
3:1:3:3.

We utilized the transcriptions in our spoken di-
alogue corpus under unknown word acquisition
scenarios. In these scenarios, a user uttered an
unknown word for the system, and the system con-
firmed the unknown word with the user. Words
associated with food names, such as Maritozzo
(Italian sweets) and Semifreddo (Italian sweets),
were assumed to be unknown words that were not
included in the train set. The number of utterances
was 641 in total, of which 369 included unknown
words. Table 1 summarizes these configurations.

5.2 Model and Training Configurations

The structure of our DQN is based on a three-
layered perceptron as shown in Fig.5. The dimen-
sions of DQN input [N, and the state feature were

N, | 64xN, 64  N,x64

S —{ Norm. --> Linear — RelU > Linear — Q

Figure 5: Structure of deep Q-network.

the same: one state of confidence score as a base-
line, and two states of confidence score and the
remaining budget rate as proposed method. The
number of actions was set to the output dimension
N, of DQN: two actions as a baseline, and three
actions as the proposed method. The number of
middle nodes was 64, and ReLU was used for the
activation function. The mean and variance nor-
malization was applied as the transformation of
the first layer of DQN. The parameters for the fea-
ture of the confidence score were determined by
using the valid set in advance, and they were frozen
during the DQN training. The mean and variance
parameters for the feature of the remaining budget
rate were set to 0.5.

The hyperparameters during DQN training were
as follows. The number of episodes was 300, and
the maximum budget per episode was set to 25.
The reward was defined as the difference between
the accuracy of word segmentation before and after
the actions: positive rewards if the performance
was improved, negative rewards if the performance
was degraded, and no rewards otherwise. The dis-
count rate v was 0.99, and the learning rate was
1075, The epsilon-greedy strategy was applied
using random section of actions with the probabil-
ity 1 — €. The initial value of € was 0.75, and it
rose to 1.0 within 250 episodes. We applied an
early-stopping method after 250 episodes and se-
lected the model that maximizes the total rewards.
The optimizer was AdamW (Loshchilov and Hut-
ter, 2018) and the mini-batch size was 32 with the
replay buffer (Lin, 1992) of 10, 000.

The nested Pitman-Yor language model
(NPYLM) (Mochihashi et al., 2009) was applied
as the word segmentation model based on a
Bayesian probabilistic model. This model was
chosen because its parameters can be updated
instantaneously by changing the N-gram counts
(except for latent variables), i.e., there is no
iterative process for parameter updates. This
property is suitable for the dynamic acquisition
of unknown words during the dialogue. The
initial model parameters were estimated using the
training set of CSJ set.
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Table 2: Results: AUC, maximum AUC and sample efficiency.

AUC (1) Max. AUC (1) Sample Efficiency (1)

Baseline 21.02 £ 0.15 21.19 0.014 £+ 0.001
Proposed 20.58 + 0.50 21.25 0.018 £ 0.002

w/o pseudo-labeling 20.60 £ 0.53 21.14 0.017 £ 0.003

w/o budget state feature  20.85 + 0.24 21.10 0.015 4+ 0.001
Oracle: optimal threshold 21.19 21.19 0.016

5.3 Evaluation Metrics
0.901 e el

We choose two kinds of evaluation criteria: area
under the curve (AUC), to show the overall per-
formance of word segmentation over the course
of budget consumption, and sample efficiency, to
show how rapidly the model reaches its peak per-
formance. In both criteria, larger values indicate
better performance.

AUC represents the area under the curve of word
segmentation accuracy plotted against the number
of consumed budgets. In the context of active learn-
ing, we use AUC to evaluate the performance of
DQN learning, as a higher AUC indicates that the
accuracy reaches its upper limit with minimal bud-
get consumption. In this experiment, the maximum
AUC value is 25, as the total budget was set to 25.

Sample efficiency represents the ratio of the total
accuracy improvement to the number of budgets
used. If the initial and peak accuracies of word seg-
mentation are denoted by u; and usg, respectively,
then the efficiency is calculated as (ug — u1) /by,
where b, is the number of budgets consumed to
reach us.

5.4 Results

Figure 6 shows the trajectory of the sentence ac-
curacy on the test-eval set with respect to the con-
sumed budgets during the active learning using the
test-train set. The mean and standard deviation
(std.) of the accuracy at each budget step, averaged
over ten parameter sets, are shown. Table 2 presents
a quantitative summary of these results based on
the evaluation metrics described in Section 5.3.

In terms of AUC, the proposed method per-
formed comparably to, or slightly worse than, the
baseline on average, as shown in the first column
of Table 2. Nevertheless, the effectiveness of the
proposed method can be better understood from
the learning curves in Figure 6. First, the accuracy
improved at approximately 20 along the horizontal
axis without consuming any budget, thanks to the
proposed pseudo-labeling action. This action was

o 9
© @
S

Sentence accuracy
1=}
~
w

0.701
0.651
—e— Baseline
0.601 o Proposed
0 5 10 15 20 25

The number of consumed budgets

Figure 6: Improvement curve. Mean and std. are shown.

indeed frequently selected during the later phase
of learning. Second, regarding performance con-
vergence, the proposed method reached the peak
accuracy (around 0.92) earlier than the baseline.
Although the proposed method exhibited higher
accuracy in both the early and late phases, the base-
line outperformed it in the middle phase. This
explains why the overall AUC remained similar to
that of the baseline.

We further provide the maximum AUC value
over ten trials in the second column of Table 2. The
maximum AUC of the proposed method (21.25)
outperformed that of the baseline (21.19). The
reason for the higher maximum but the lack of
improvement in average performance can be at-
tributed to the large standard deviation observed
across its trials. The larger standard deviation in-
dicates that the proposed method is sensitive to
randomness, such as the initial values in DQN. In
particular, the pseudo-labeling appears to increase
performance variance, as seen from the standard
deviation of AUC in Table 2. Nevertheless, this
also suggests that our method has room for im-
provement in learning a better policy by utilizing a
validation set in the context of active learning (e.g.,
test-valid set). This could reliably help stabilize
the training of DQN, which should be addressed in
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future work.

In terms of sample efficiency, the proposed
method outperformed the baseline, as shown in
the third column of Table 2. The sample efficiency
of our method was higher by 0.004 compared to
that of the baseline. This indicates that the pro-
posed method reached higher performance more
quickly, meaning that it can utilize samples more
efficiently.

As part of the ablation study, we present in Ta-
ble 2 the performance of our method without the
pseudo-labeling and without the budget state fea-
ture. The budget state feature was shown to im-
prove the sample efficiency, as observed by com-
paring the values between the proposed method
and the variant without the budget state feature.
We also observe that the maximum AUC decreased
when either the pseudo-labeling action or the bud-
get state feature was removed. These results sug-
gest that both components of our proposed method
contributed to improved performance.

We also tested the optimal confidence threshold
as a reference point, representing an oracle strategy
based only on confidence scores. The threshold
of —0.51 was selected using the test-eval set so
as to maximize segmentation performance. This
setup corresponds to a best-case scenario of un-
certainty sampling (Lewis and Gale, 1994), where
labeling is determined by applying a threshold to
the confidence score. Notably, the maximum AUC
of the proposed method outperformed that of the
oracle, which further supports the effectiveness of
the pseudo-labeling. Given the mean AUC gap of
0.61 between the proposed method and the oracle,
there remains room to improve the efficiency of
the learning policy based on confidence scores, as
discussed previously.

6 Conclusion

In this study, we cast knowledge acquisition
through dialogue as a stream-based active learn-
ing problem. Using the segmentation of user utter-
ances containing novel words as a target task, we
proposed two extensions in reinforcement learning
to improve the efficiency of training the acquisition
function.

Simulation-based experiments showed the po-
tential of the proposed method to improve the seg-
mentation performance while reducing the number
of questions asked to the user. These results sug-
gest that the system can strategically learn to ask

questions in order to improve its performance with
minimal user effort.

An important direction for future work is to eval-
uate the proposed method with human users rather
than through simulations. It is crucial to assess not
only the performance of the task-dependent model
but also the human impression of the interaction.
For instance, the current question strategy is based
on the assumption that users will correctly provide
all isolated words for word segmentation. However,
this assumption is neither realistic nor user-friendly
in real interactions. Therefore, it is necessary to
design question strategy that minimizes the user
effort while maximizing the model’s performance.

In addition, stabilizing the training of DQN by
introducing a validation set remains an important
issue. This is because the performance of DQN
often depends on several factors, including the ini-
tial values of network weights, the permutation of
the instances in the training and test sets, and re-
inforcement learning hyperparameters such as € in
the epsilon-greedy strategy.

Memory limitation is a potential issue for stream-
based active learning during dialogue, especially
in life-long dialogue scenarios. While the memory
capacity is typically limited, the number of paired
instances and their obtained labels grows monoton-
ically over time. As a result, when the memory
reaches its capacity, it may be necessary to replace
stored data with new paired data based on their
importance. On the other hand, certain models like
NPYLM, which we used in this paper, allow the
recursive update of parameters and thus can miti-
gate the memory limitation issue. For instance, it
is not necessary to store all paired data for updat-
ing the word-count parameters in NPYLM because
these parameters are simply incremented for each
paired data (there are no gradient computation and
iteration process).

Limitations

Although our formulation of knowledge acquisi-
tion through dialogue is designed to be general,
the details inevitably depend on each task. This
paper showed the potential of our formulation and
its application to the scenario of unknown word ac-
quisition. However, several aspects require further
consideration and investigation, including scalabil-
ity to diverse datasets and tasks, as well as overall
generality.

For the unknown word acquisition task, the
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dataset and evaluation patterns were limited with
respect to scalability, dependency on dataset size,
word segmentation methods, and language. Since
the difficulty of word segmentation depends on
the size of the word dictionary (i.e., the number
of words known by the system), a more detailed
performance investigation will support the develop-
ment of practical dialogue systems. Additionally,
the design of states, actions, and network struc-
ture still has room for improvement, particularly
concerning the high variance in performance.

Extending evaluations to other tasks and task-
dependent models is essential to establish the gen-
erality of our approach based on stream-based ac-
tive learning, even though the controlled setup in
our experiment helps isolate the effects of our strat-
egy. However, demonstrating generality remains
a significant challenge due to the dependency of
effective state descriptions and question design on
specific tasks and models. For example, tasks such
as user sentiment estimation, word meaning esti-
mation, named entity recognition, and knowledge
base expansion require task- and model-specific
designs. Furthermore, the optimal model for each
task will vary and evolve as technologies advance.
Nonetheless, we believe that the label (information)
obtained from users during dialogue will contribute
to supervised model training and enhance model
performance.

Ethical Considerations

Dialogue-based knowledge acquisition systems
that learn by asking users need to consider the po-
tential risk of acquiring biased or inappropriate
information in general, whereas the segmentation
of user utterances as addressed in this paper has
negligible ethical concerns.
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