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Abstract
With the growing reliance on digital devices
with graphical user interfaces (GUIs) like com-
puters and smartphones, the demand for smart
voice assistants has grown significantly. While
multimodal large language models (MLLM)
like GPT-4V excel in many areas, they struggle
with GUI interactions, limiting their effective-
ness in automating everyday tasks. In this work,
we introduce ClickAgent, a novel framework
for building autonomous agents. ClickAgent
combines MLLM-driven reasoning and action
planning with a separate UI location model that
identifies relevant UI elements on the screen.
This approach addresses a key limitation of
current MLLMs: their inability to accurately
locate UI elements. Evaluations conducted us-
ing both an Android emulator and a real smart-
phone show that ClickAgent outperforms other
autonomous agents (DigiRL, CogAgent, Ap-
pAgent) on the AITW benchmark.

1 Introduction

The current generation of voice assistants (e.g.,
Google Assistant, Siri, Alexa) relies on established
spoken language understanding methods such as
Joint NLU (Goo et al., 2018). However, as these ap-
proaches have plateaued, the industry is shifting its
focus toward AI Agents. These systems, designed
to interact with graphical user interfaces (GUIs) au-
tonomously, are becoming critical for automating
tasks on digital devices such as smartphones and
computers (Kapoor et al., 2024).

Researchers have begun developing agent-
oriented large language models (LLMs) (Chen
et al., 2023a; Zeng et al., 2023), but the scope of
language-only agents is limited in voice assistant
applications, where interaction with GUIs is often
needed to perform complex tasks. MLLMs and
visual language models (VLMs) offer a promis-
ing solution to these limitations (You et al., 2023;
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Rahman et al., 2024; Gur et al., 2024; Baechler
et al., 2024). Unlike language-based agents that
rely solely on textual data such as HTML (Nakano
et al., 2021) or OCR outputs (Rawles et al.,
2023), MLLM-based agents directly interpret vi-
sual signals from GUIs. However, while current-
generation MLLMs demonstrate reasonable abil-
ities in screen understanding, reasoning, and ac-
tion planning, they struggle to locate specific UI
elements on screens accurately (Liu et al., 2024).
Previous works (Yang et al., 2023; Fan et al., 2024;
Ma et al., 2024a) attempt to bypass this issue, for
example, by using an XML file that details the inter-
active elements or by using a separate OCR model.
Yet, such multi-module approaches are error-prone
due to the inherent complexity of GUIs and the
inconsistencies in XML/HTML files.

Our contribution lies in the development of
ClickAgent, a hybrid autonomous agent that com-
bines MLLM-driven reasoning with a special-
ized UI location model. Specifically, ClickAgent
leverages the InternVL2.0 MLLM (Chen et al.,
2023b) for reasoning and the TinyClick UI location
model for identifying the coordinates of relevant
UI elements (Pawlowski et al., 2024). This ap-
proach significantly improves performance on the
AITW benchmark (Rawles et al., 2024), surpassing
prompt-based agents (D-PoT (Zhang et al., 2024b),
CogAgent (Hong et al., 2024)) and DigiRL (Bai
et al., 2024), a reinforcement learning-based solu-
tion.

2 Method

Although models like SeeClick (Cheng et al.,
2024a) and Auto-UI (Zhan and Zhang, 2023) excel
at identifying UI elements, they lack robust action
planning, leading to low success rates in real-world
smartphone tasks. To overcome these challenges,
ClickAgent integrates InternVL2.0 for reasoning,
while a dedicated UI location model identifies the
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Figure 1: In ClickAgent, the MLLM is responsible for reasoning, reflection and action planning. In this example, the
MLLM generates a UI command, and a specialized UI location model identifies the coordinates of the corresponding
icon on the screen.

exact coordinates of the target UI elements. The in-
puts to the UI location model are a screenshot and
a natural language command corresponding to the
desired UI element. ClickAgent’s hybrid approach
addresses the limitations of current MLLMs, which
struggle to locate UI elements accurately (Liu et al.,
2024).

ClickAgent consists of three main components:
Decision, UI Location, and Reflection. In the De-
cision module, the MLLM is asked to analyze the
current screenshot, review the action history, and
determine the next step to complete the user’s task.
The Decision module selects one of the predefined
actions:

• Click: The MLLM generates a natural lan-
guage command for the UI location model
(e.g., “click on the Gmail icon."). The com-
mand and screenshot are passed to the UI lo-
cation model, which returns the coordinates
of the relevant UI element.

• Type: The MLLM generates the text to be
typed into the text field.

• OpenApp: If this action is chosen, an addi-
tional query is made to the MLLM to select
an app from the list retrieved from the Android
device.

• Swipe: The agent swipes in the specified di-
rection (up, down, left, or right).

For example, as illustrated in Figure 1, the
MLLM chooses the Click action and issues a UI ac-
tion command (“Click on the Eyes Closed Official
Video") which, along with a screenshot, serves as
input to the UI location model. The model then re-
turns the bounding box coordinates of the relevant
UI element.

After the action is executed on Android, the
next screenshot is captured. In the Reflection mod-
ule, the MLLM is asked to analyze the screenshot
content and the entire action history. Reflection
evaluates whether the user’s task was successfully
completed, returning either a “success" or “failure"
status. If the task is marked as successful, the au-
tonomous agent is stopped; otherwise, the agent
proceeds with the next decision and reflection cy-
cle.

InternVL2.0 was selected as the primary MLLM
for the Decision and Reflection modules due to
its strong performance on agentic benchmarks
and ease of deployment. SeeClick and TinyClick
were chosen for UI location tasks because of
their high performance on benchmarks such as
ScreenSpot (Cheng et al., 2024b) and Omni-
Act (Kapoor et al., 2024).
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Table 1: Performance comparison of autonomous agents on the AITW General and AITW WebShopping benchmark
subsets. Task completion rates [%] were calculated based on manual evaluations. The main ClickAgent results were
obtained using an actual Android smartphone, while the results with cache removal were performed on an Android
smartphone emulator to simulate a first-time user experience.

AITW General AITW WebShopping Overall

AppAgent (GPT-4V) 15.6 13.5 14.0
AutoUI 12.5 18.8 17.2
CogAgent 25.0 42.6 38.3
D-PoT 42.2 36.6 -
DigiRL 70.0 68.8 69.6

ClickAgent (ours) 72.5 75.8 73.5
w/ Android cache removal 73.1 69.9 72.0

3 Evaluation Method

We evaluated ClickAgent on both an Android
smartphone emulator and a real Android smart-
phone, using the task completion rate (in percent-
age) as the primary performance metric. This met-
ric assesses whether the agent successfully exe-
cuted the user’s task, making it the most critical
measure in autonomous agent evaluation. Unlike
metrics such as step success rate or action accuracy
(Zhan and Zhang, 2023; Ma et al., 2024b; Shen
et al., 2024), task completion rate provides a clear
assessment of the agent’s ability to execute user
commands on the device (Zhang et al., 2024a).

Our evaluation was performed manually due to
the imprecision of current automatic evaluation
methods (Pan et al., 2024). We utilized 4 x NVIDIA
A100 80GB GPU for running InternVL-2.0 and
one NVIDIA A100 40GB GPU for the UI location
models (SeeClick, TinyClick). Each experiment
was repeated three times, showing no significant
deviation in accuracy across runs. We report the av-
erage of these three runs. Except for D-PoT (Zhang
et al., 2024b), all results of baseline agents were
taken from (Bai et al., 2024).

3.1 Test Environment

The tests were conducted in two scenarios: with
and without cache removal. In the cache removal
scenario, the emulator’s cache was cleared before
each test case. This ensured that popups and first-
time user interactions appeared for each website,
simulating a first-time user experience. In the
no-cache removal scenario, conducted on the real
Android smartphone, the cache was retained to
mimic a user who had previously visited the web-
sites, thereby minimizing or eliminating popups
and other initial distractions.

We conducted an evaluation of ClickAgent on a

subset of the AITW dataset (Rawles et al., 2023),
specifically curated by DigiRL1, to ensure compara-
bility with this main baseline. The AITW General
consists of tasks related to interacting with every-
day smartphone applications, while WebShopping
focuses on tasks specific to e-commerce platforms.

4 Main Results

Table 1 presents the main results from the
AITW benchmark. ClickAgent consis-
tently outperforms other agents (DigiRL,
AppAgent and CogAgent), achieving a signifi-
cantly higher task completion rate, regardless of
whether the Android cache was cleared or not. As
shown in Table 2, the accuracy of the UI location
model plays a crucial role in determining the
overall task completion rate, making it a key factor
in ClickAgent’s performance.

4.1 UI Location Model Analysis

Our primary insight is that TinyClick excels in the
OCR-related UI location. Therefore, we adjusted
the prompt to encourage the MLLM to generate
UI commands that incorporate textual information
when possible. For instance, rather than produc-
ing commands like “Click on the first email," the
MLLM is prompted to return more specific com-
mands such as “Click on the email with the subject
‘Meeting Agenda.’". This single prompt modifi-
cation led to an improvement of around 10% in
performance on the AITW.

4.2 ClickAgent Fails Analysis

On the AITW, the most common failures of Click-
Agent were distributed across the following areas,

1https://github.com/DigiRL-agent/digirl/tree/
master/digirl/environment/android/assets/task_
set

https://github.com/DigiRL-agent/digirl/tree/master/digirl/environment/android/assets/task_set
https://github.com/DigiRL-agent/digirl/tree/master/digirl/environment/android/assets/task_set
https://github.com/DigiRL-agent/digirl/tree/master/digirl/environment/android/assets/task_set
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Table 2: Performance comparison of ClickAgent using
different UI location models on the AITW General and
AITW WebShopping (Task completion rates [%]).

AITW General AITW WebShopping

InternVL2-76B 0 0
SeeClick-9.6B 47.6 48.8
TinyClick-0.27B 72.5 75.8

with the percentages indicating the proportion of
total errors attributed to each component:

• Reflection Module (47%): In most cases,
the agent stops the action too early, even
though the task has not been completed. From
our observation the quality of Reflection is
directly linked to the general reasoning capa-
bilities of the MLLM used. Therefore, even
reinforcement learning-based agents like Di-
giRL rely on proprietary MLLMs (Gemini)
for Reflection2.

• UI Location Model (15%): Some UI ele-
ments are unique to specific applications, and
certain web pages have outdated designs, mak-
ing it challenging for the UI location model to
identify desired elements accurately.

• Decision Module (38%): Similarly to UI
location, most decision failures arise from
the MLLM’s limited understanding of specific
UIs and their functionalities.

5 Ablation Study

We conduct an ablation study to understand the im-
pact of two main components (MLLM and UI lo-
cation model) on the overall performance of Click-
Agent. Table 2 evaluates the UI location model’s
impact on ClickAgent’s performance, comparing
three different models. As expected, the MLLM
(InternVL-2.0-76B) shows poor performance in the
UI location task, resulting in ClickAgent failing
all test cases. The most significant improvement
comes from using the recently released TinyClick,
which results in a substantially higher success rate
than SeeClick.

Figure 2 illustrates the effect of MLLM general
quality on ClickAgent’s performance by evaluating
four versions of InternVL-2.0 (1B, 7B, 26B, and
76B), alongside Qwen2.0-VL-72B (Wang et al.,

2https://github.com/DigiRL-agent/digirl/blob/
master/digirl/environment/android/evaluate.py#
L161

Figure 2: ClickAgent performance on the AITW Gen-
eral and AITW WebShopping using different MLLMs.
In all cases, the TinyClick model is employed for UI
location.

2024). The results show that the quality of the
MLLM plays a critical role in ClickAgent’s per-
formance. Larger models, such as InternVL-2.0-
76B, result in significantly higher success rates
compared to the smaller variants. Further improve-
ments in the MLLM quality should continue to
enhance ClickAgent’s performance (especially in
terms of the accuracy of the Reflection module).
On the other hand, Figure 2 highlights that agents
directly deployable on user devices achieve signifi-
cantly worse performance, rendering them far from
ready for commercialization.

6 Conclusion

In this paper, we introduced ClickAgent, a hybrid
autonomous agent that combines MLLM-driven
reasoning with a specialized UI location model. By
addressing the limitations of previous approaches
in identifying UI elements, ClickAgent achieves
a task completion rate of 73.5%, outperforming
state-of-the-art agents like DigiRL (69.6%) on the
AITW benchmark. Notably, it surpasses existing
methods without relying on proprietary MLLMs
such as Gemini or GPT-4V. The failures observed
in the Reflection and Decision modules highlight
the need for further advancements in MLLM capa-
bilities, particularly in understanding UIs of less
popular apps and websites. One of the most im-
portant future directions is research on On-Device
Agents, as maintaining GPU infrastructure is costly,
and on-device deployment enables better personal-
ization while preserving user privacy.

https://github.com/DigiRL-agent/digirl/blob/master/digirl/environment/android/evaluate.py#L161
https://github.com/DigiRL-agent/digirl/blob/master/digirl/environment/android/evaluate.py#L161
https://github.com/DigiRL-agent/digirl/blob/master/digirl/environment/android/evaluate.py#L161
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Cărbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model
for ui and infographics understanding. In Proceed-
ings of the Thirty-ThirdInternational Joint Confer-
ence on Artificial Intelligence.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-
girl: Training in-the-wild device-control agents with
autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.
Fireact: Toward language agent fine-tuning. arXiv
preprint arXiv:2310.05915.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2023b. Internvl: Scaling
up vision foundation models and aligning for generic
visual-linguistic tasks. In Computer Vision and Pat-
tern Recognition.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024a.
Seeclick: Harnessing gui grounding for advanced vi-
sual gui agents. In Annual Meeting of the Association
for Computational Linguistics.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024b.
Seeclick: Harnessing gui grounding for advanced vi-
sual gui agents. In Annual Meeting of the Association
for Computational Linguistics.

Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang
Zhao, Xinze Guan, Jie Yang, Yi Zhang, and Xin Eric
Wang. 2024. Read anywhere pointed: Layout-aware
gui screen reading with tree-of-lens grounding. arXiv
preprint arXiv:2406.19263.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 753–757.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2024. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. Preprint, arXiv:2307.12856.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2024. Cogagent: A
visual language model for gui agents. In Proceedings

of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14281–14290.

Raghav Kapoor, Yash Parag Butala, Melisa Russak,
Jing Yu Koh, Kiran Kamble, Waseem Alshikh, and
Ruslan Salakhutdinov. 2024. Omniact: A dataset and
benchmark for enabling multimodal generalist au-
tonomous agents for desktop and web. arXiv preprint
arXiv:2402.17553.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam,
Graham Neubig, Yuanzhi Li, and Xiang Yue. 2024.
Visualwebbench: How far have multimodal llms
evolved in web page understanding and grounding?
arXiv preprint arXiv:2404.05955.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024a.
Coco-agent: A comprehensive cognitive mllm agent
for smartphone gui automation. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 9097–9110.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024b.
Comprehensive cognitive llm agent for smartphone
gui automation. arXiv preprint arXiv:2402.11941.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. 2024. Autonomous
evaluation and refinement of digital agents. In First
Conference on Language Modeling.

Pawel Pawlowski, Krystian Zawistowski, Wojciech La-
pacz, Marcin Skorupa, Adam Wiacek, Sebastien
Postansque, and Jakub Hoscilowicz. 2024. Tinyclick:
Single-turn agent for empowering gui automation.
Preprint, arXiv:2410.11871.

Abdur Rahman, Rajat Chawla, Muskaan Kumar, Arkajit
Datta, Adarsh Jha, Mukunda NS, and Ishaan Bhola.
2024. V-zen: Efficient gui understanding and precise
grounding with a novel multimodal llm. Preprint,
arXiv:2405.15341.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: a large-scale dataset for android device control.
In Proceedings of the 37th International Conference
on Neural Information Processing Systems, pages
59708–59728.

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori-
ana Riva, and Timothy Lillicrap. 2024. An-
droidinthewild: A large-scale dataset for android
device control. Advances in Neural Information Pro-
cessing Systems, 36.

Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang,
Yu Zhou, Can Ma, and Xiangyang Ji. 2024. Falcon-
ui: Understanding gui before following user instruc-
tions. arXiv preprint arXiv:2412.09362.

https://api.semanticscholar.org/CorpusID:267523393
https://api.semanticscholar.org/CorpusID:267523393
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:266521410
https://api.semanticscholar.org/CorpusID:267069082
https://api.semanticscholar.org/CorpusID:267069082
https://api.semanticscholar.org/CorpusID:267069082
https://api.semanticscholar.org/CorpusID:267069082
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2410.11871
https://arxiv.org/abs/2410.11871
https://arxiv.org/abs/2405.15341
https://arxiv.org/abs/2405.15341


476

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-
vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-
biao Huang, Bin Fu, and Gang Yu. 2023. Appa-
gent: Multimodal agents as smartphone users. arXiv
preprint arXiv:2312.13771.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-
Fu Chang, and Yinfei Yang. 2023. Ferret: Refer
and ground anything anywhere at any granularity.
Preprint, arXiv:2310.07704.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Zhuosheng Zhan and Aston Zhang. 2023. You only look
at screens: Multimodal chain-of-action agents. In
Annual Meeting of the Association for Computational
Linguistics.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng,
Yunhe Yan, Longxi Gao, Yuanchun Li, and Meng-
wei Xu. 2024a. Llamatouch: A faithful and scalable
testbed for mobile ui task automation. In Proceed-
ings of the 37th Annual ACM Symposium on User
Interface Software and Technology, pages 1–13.

Shaoqing Zhang, Zhuosheng Zhang, Kehai Chen, Xin-
bei Ma, Muyun Yang, Tiejun Zhao, and Min Zhang.
2024b. Dynamic planning for llm-based graphical
user interface automation. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 1304–1320.

https://arxiv.org/abs/2310.07704
https://arxiv.org/abs/2310.07704
https://api.semanticscholar.org/CorpusID:262053313
https://api.semanticscholar.org/CorpusID:262053313

	Introduction
	Method
	Evaluation Method
	Test Environment

	Main Results
	UI Location Model Analysis
	ClickAgent Fails Analysis

	Ablation Study
	Conclusion

