@inproceedings{castillo-lopez-etal-2025-intent,
title = "Intent Recognition and Out-of-Scope Detection using {LLM}s in Multi-party Conversations",
author = "Castillo-L{\'o}pez, Galo and
de Chalendar, Gael and
Semmar, Nasredine",
editor = "B{\'e}chet, Fr{\'e}d{\'e}ric and
Lef{\`e}vre, Fabrice and
Asher, Nicholas and
Kim, Seokhwan and
Merlin, Teva",
booktitle = "Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = aug,
year = "2025",
address = "Avignon, France",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.sigdial-1.41/",
pages = "504--512",
abstract = "Intent recognition is a fundamental component in task-oriented dialogue systems (TODS). Determining user intents and detecting whether an intent is Out-of-Scope (OOS) is crucial for TODS to provide reliable responses. However, traditional TODS require large amount of annotated data. In this work we propose a hybrid approach to combine BERT and LLMs in zero and few-shot scenarios to recognize intents and detect OOS utterances. Our approach leverages LLMs generalization power and BERT{'}s computational efficiency in such scenarios. We evaluate our method on multi-party conversation corpora and observe that sharing information from BERT outputs to LLMs lead to system performance improvement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="castillo-lopez-etal-2025-intent">
<titleInfo>
<title>Intent Recognition and Out-of-Scope Detection using LLMs in Multi-party Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Galo</namePart>
<namePart type="family">Castillo-López</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gael</namePart>
<namePart type="family">de Chalendar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasredine</namePart>
<namePart type="family">Semmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabrice</namePart>
<namePart type="family">Lefèvre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Asher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teva</namePart>
<namePart type="family">Merlin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Avignon, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Intent recognition is a fundamental component in task-oriented dialogue systems (TODS). Determining user intents and detecting whether an intent is Out-of-Scope (OOS) is crucial for TODS to provide reliable responses. However, traditional TODS require large amount of annotated data. In this work we propose a hybrid approach to combine BERT and LLMs in zero and few-shot scenarios to recognize intents and detect OOS utterances. Our approach leverages LLMs generalization power and BERT’s computational efficiency in such scenarios. We evaluate our method on multi-party conversation corpora and observe that sharing information from BERT outputs to LLMs lead to system performance improvement.</abstract>
<identifier type="citekey">castillo-lopez-etal-2025-intent</identifier>
<location>
<url>https://aclanthology.org/2025.sigdial-1.41/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>504</start>
<end>512</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Intent Recognition and Out-of-Scope Detection using LLMs in Multi-party Conversations
%A Castillo-López, Galo
%A de Chalendar, Gael
%A Semmar, Nasredine
%Y Béchet, Frédéric
%Y Lefèvre, Fabrice
%Y Asher, Nicholas
%Y Kim, Seokhwan
%Y Merlin, Teva
%S Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2025
%8 August
%I Association for Computational Linguistics
%C Avignon, France
%F castillo-lopez-etal-2025-intent
%X Intent recognition is a fundamental component in task-oriented dialogue systems (TODS). Determining user intents and detecting whether an intent is Out-of-Scope (OOS) is crucial for TODS to provide reliable responses. However, traditional TODS require large amount of annotated data. In this work we propose a hybrid approach to combine BERT and LLMs in zero and few-shot scenarios to recognize intents and detect OOS utterances. Our approach leverages LLMs generalization power and BERT’s computational efficiency in such scenarios. We evaluate our method on multi-party conversation corpora and observe that sharing information from BERT outputs to LLMs lead to system performance improvement.
%U https://aclanthology.org/2025.sigdial-1.41/
%P 504-512
Markdown (Informal)
[Intent Recognition and Out-of-Scope Detection using LLMs in Multi-party Conversations](https://aclanthology.org/2025.sigdial-1.41/) (Castillo-López et al., SIGDIAL 2025)
ACL