@inproceedings{walker-etal-2025-retrieving,
title = "Retrieving Relevant Knowledge Subgraphs for Task-Oriented Dialogue",
author = "Walker, Nicholas Thomas and
Lison, Pierre and
Hilgendorf, Laetitia and
Wagner, Nicolas and
Ultes, Stefan",
editor = "B{\'e}chet, Fr{\'e}d{\'e}ric and
Lef{\`e}vre, Fabrice and
Asher, Nicholas and
Kim, Seokhwan and
Merlin, Teva",
booktitle = "Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = aug,
year = "2025",
address = "Avignon, France",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.sigdial-1.42/",
pages = "513--526",
abstract = "In this paper, we present an approach for extracting knowledge graph information for retrieval augmented generation in dialogue systems. Knowledge graphs are a rich source of background information, but the inclusion of more potentially useful information in a system prompt risks decreased model performance from excess context. We investigate a method of retrieving relevant subgraphs of maximum relevance and minimum size by framing this trade-off as a Prize-collecting Steiner Tree problem. The results of our user study and analysis indicate promising efficacy of a simple subgraph retrieval approach compared with a top-K retrieval model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="walker-etal-2025-retrieving">
<titleInfo>
<title>Retrieving Relevant Knowledge Subgraphs for Task-Oriented Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="given">Thomas</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Lison</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laetitia</namePart>
<namePart type="family">Hilgendorf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Wagner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabrice</namePart>
<namePart type="family">Lefèvre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Asher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teva</namePart>
<namePart type="family">Merlin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Avignon, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present an approach for extracting knowledge graph information for retrieval augmented generation in dialogue systems. Knowledge graphs are a rich source of background information, but the inclusion of more potentially useful information in a system prompt risks decreased model performance from excess context. We investigate a method of retrieving relevant subgraphs of maximum relevance and minimum size by framing this trade-off as a Prize-collecting Steiner Tree problem. The results of our user study and analysis indicate promising efficacy of a simple subgraph retrieval approach compared with a top-K retrieval model.</abstract>
<identifier type="citekey">walker-etal-2025-retrieving</identifier>
<location>
<url>https://aclanthology.org/2025.sigdial-1.42/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>513</start>
<end>526</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieving Relevant Knowledge Subgraphs for Task-Oriented Dialogue
%A Walker, Nicholas Thomas
%A Lison, Pierre
%A Hilgendorf, Laetitia
%A Wagner, Nicolas
%A Ultes, Stefan
%Y Béchet, Frédéric
%Y Lefèvre, Fabrice
%Y Asher, Nicholas
%Y Kim, Seokhwan
%Y Merlin, Teva
%S Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2025
%8 August
%I Association for Computational Linguistics
%C Avignon, France
%F walker-etal-2025-retrieving
%X In this paper, we present an approach for extracting knowledge graph information for retrieval augmented generation in dialogue systems. Knowledge graphs are a rich source of background information, but the inclusion of more potentially useful information in a system prompt risks decreased model performance from excess context. We investigate a method of retrieving relevant subgraphs of maximum relevance and minimum size by framing this trade-off as a Prize-collecting Steiner Tree problem. The results of our user study and analysis indicate promising efficacy of a simple subgraph retrieval approach compared with a top-K retrieval model.
%U https://aclanthology.org/2025.sigdial-1.42/
%P 513-526
Markdown (Informal)
[Retrieving Relevant Knowledge Subgraphs for Task-Oriented Dialogue](https://aclanthology.org/2025.sigdial-1.42/) (Walker et al., SIGDIAL 2025)
ACL
- Nicholas Thomas Walker, Pierre Lison, Laetitia Hilgendorf, Nicolas Wagner, and Stefan Ultes. 2025. Retrieving Relevant Knowledge Subgraphs for Task-Oriented Dialogue. In Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 513–526, Avignon, France. Association for Computational Linguistics.