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Abstract

There is a growing expectation for the real-
ization of proactive home-assistant robots that
can assist users in their daily lives. It is essen-
tial to develop a framework that closely ob-
serves the user’s surrounding context, selec-
tively extracts relevant information, and infers
the user’s needs to proactively propose appro-
priate assistance. In this study, we first ex-
tend the Do-I-Demand dataset to define ex-
pected proactive assistance actions in domes-
tic situations, where users make ambiguous ut-
terances. These behaviors were defined based
on common patterns of support that a major-
ity of users would expect from a robot. We
subsequently constructed a framework that in-
fers users = expected assistance actions from
ambiguous utterances through commonsense
reasoning. We explored two approaches: (1)
multi-step reasoning using COMET as a com-
monsense reasoning engine, and (2) direct rea-
soning using large language models. Our ex-
perimental results suggest that both the multi-
step and direct reasoning methods can success-
fully derive necessary assistance actions even
when dealing with ambiguous user utterances.

1 Introduction

With recent advancements in language under-
standing capabilities enabled by large language
models (LLMs), task-oriented domestic robots
and systems that assist users based on natural lan-
guage instructions are becoming a reality. Such
systems interpret language (=user utterances) and
map them to system actions that the system should
perform, then determine an action plan based
on feasible capabilities and surrounding situa-
tions (Brohan et al., 2023; Nwankwo and Rueck-
ert, 2024; Kawaharazuka et al., 2024). The task of
mapping language instruction to system actions is
known as natural language understanding (NLU),
and it has long been a central challenge in this
field (Wang et al., 2005; Liu et al., 2021).
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In NLU tasks, the user’s intent is assumed to
be explicit, and the primary focus has been on
how to call the appropriate system action API in
response to the user’s utterance (Williams et al.,
2016). However, real-world user utterances are of-
ten more diverse and ambiguous (Kawahara et al.,
1998; Yoshino and Kawahara, 2015; Akasaki and
Sassano, 2024). In such cases, the system must in-
fer the user’s potential needs or implicatures from
the utterance and proactively propose supportive
actions (Tanaka et al., 2024). For example, when
the user says, “Thank you for the meal,” it can
be inferred that the user has finished eating. Ide-
ally, the system should proactively suggest ac-
tions, such as “Shall I clear the plates on the ta-
ble?,” before the user explicitly makes a request.

Several challenges arise when the system tries
to infer the user’s potential needs from their utter-
ances. A user’s potential needs can vary greatly
depending on the situation, and few proactive ac-
tions are universally acceptable to all users. The
system must consider several action candidates
based on commonly expected or socially appro-
priate actions, and select the most suitable one tai-
lored to the users (Tanaka et al., 2021, 2023).

Moreover, when considering the appropriate
proactive action in response to an ambiguous user
utterance, it is often crucial to clarify the under-
lying assumptions behind the utterance. In this
process, multi-step reasoning based on common-
sense reasoning, such as COMET, is practical (Liu
and Singh, 2004; Sap et al., 2019; Bosselut et al.,
2019). However, multi-step reasoning without a
clearly defined goal can require many inferences
to reach an appropriate conclusion, and it requires
a method for re-evaluating the diverse hypotheses
generated during this process.

In response to these challenges, a method
known as Chain-of-Thought (CoT) has recently
gained attention (Wei et al., 2022). CoT in-
volves providing LLMs with examples of rea-
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soning steps, allowing them to perform inference
passes (Jin et al., 2024). When using CoT to
directly estimate the user’s potential intent, ex-
plicit inference rules are not provided; however,
the LLM can suggest plausible reasoning paths
leading to the inferred conclusion. Compared to
traditional multi-step reasoning approaches, CoT
is expected to reduce computational cost regard-
ing the number of inferences.

In this study, we develop a framework of proac-
tive home-assistant robots by leveraging different
reasoning methods. We extend the existing Do-
I-Demand dataset (Tanaka et al., 2024) by anno-
tating robots’ support actions that are generally
expected, i.e., commonsensically appropriate, by
most people in response to specific user situations
within a domestic setting. Using this dataset, we
build an action reasoning system of proactive ac-
tions that robots should take. We compare two ap-
proaches: multi-step reasoning based on COMET
and direct reasoning based on LLM, which are
prompted by Chain-of-Thought (CoT) examples.
Experimental results indicate that each method has
its strengths and limitations, suggesting that inte-
grating these approaches may improve accuracy in
a proactive home-assistant system.

2 Related Works

2.1 Task-Oriented Dialogues and Robots

Research on domestic robots that perform assis-
tive tasks based on natural language instructions
has been actively conducted toward real-world de-
ployment. Several approaches have been pro-
posed, including frameworks that map natural lan-
guage to executable actions (Brohan et al., 2023),
multimodal robotic models that integrate vision
and language (Driess et al., 2023), and end-to-
end learning of language-to-action mappings us-
ing large-scale datasets (Brohan et al., 2022; O’
Neill et al., 2024). These studies assume the
user’s intent is explicitly stated through direct
commands, and the user’s intent is linguistically
clear. We seek to relax this assumption by devel-
oping a framework that infers the potential user
needs from ambiguous utterances and proactively
selects appropriate support actions.

2.2 Handling Ambiguity

Various studies have been conducted in NLU sys-
tems on robots’ ability to resolve linguistic am-
biguity. Some approaches integrate multimodal

information, such as pointing gestures and vi-
sual context, to resolve references caused by de-
ictic expressions or ellipses (Oyama et al., 2023;
Ueda et al., 2024). Other studies have proposed
methods for inferring omitted task instructions in
daily life by leveraging commonsense causal rela-
tions (Takata et al., 2022). Hypothesis-driven ap-
proaches have been introduced to generate appro-
priate robot responses based on contextual cues,
even when the user ’ s intent is not explicitly con-
veyed (Lanza et al., 2020). While these studies
contribute to interpreting ambiguous utterances,
they still assume a certain level of task-oriented
intent. In contrast, this study aims to enable
more autonomous and contextually “considerate”
and “proactive” reasoning by interpreting not only
commands or requests themselves, but also the
user’s situation and underlying intentions, even
when the utterance itself is not directive in nature.

2.3 Reasoning and Implicature

To derive appropriate support actions from am-
biguous user utterances, the system needs to per-
form context-sensitive reasoning and interpret im-
plicatures embedded in the utterance (Rooy, 2001;
Ruis et al., 2023). COMET is a commonsense rea-
soning model that captures causal and temporal re-
lationships between everyday events as a knowl-
edge graph and generates commonsense knowl-
edge based on these relations (Bosselut et al.,
2019). Such commonsense reasoning effectively
predicts unspoken intentions or the next plausi-
ble actions. In addition, the framework of ab-
ductive reasoning, which infers the most plausible
assumptions from context, helps complement the
hidden intentions or goals underlying user utter-
ances (Bhagavatula et al.). From a pragmatic per-
spective, research has also progressed on inferring
the context-dependent meanings of utterances, be-
yond their surface linguistic form (Lanza et al.,
2020). Building on these reasoning approaches,
this study aims to infer “what the user wants the
robot to do” grounded in commonsense context,
and to enable robots to proactively execute appro-
priate actions.

3 Task and Dataset

3.1 Proactive Life Support Scenario:
Do-I-Demand Dataset

To enable robots to infer and execute appropriate
support actions in response to ambiguous utter-
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Label

Value

Utterance Thank you for the meal

User position Sofa

User pose Sitting

Holding objects N/A

Objects on the low table Catsup, Laptop, Plastic bottle

Olive oil, Kitchen paper, Snack,

Objects on the dining table Cup, Water bottle

Objects on the kitchen Plastic bottle

Robot’s position Kitchen

Reflective/considerate

action Put away the catsup

Figure 1: An example of Do-I-Demand dataset

ances, it is necessary to accurately interpret not
only the utterance itself but also the underlying
user intent. The Do-I-Demand dataset was con-
structed to realize such considerate robotic ac-
tions (Tanaka et al., 2024; Tsai et al., 2024)!2.

This dataset focuses on scenarios in which a do-
mestic robot performs supportive actions, defining
40 categories of actions. For each action, pairs
of ambiguous utterances and corresponding situ-
ations in which the action would be expected were
collected through crowdsourcing. Workers were
instructed not to give explicit commands but to
describe situations where natural user utterances
could be expected. Based on these descriptions,
the research team recreated the situations in a real
room, recorded videos, and annotated user utter-
ances, positions, postures, and surrounding ob-
jects. Each scenario is associated with a single
reflective/considerate action® that the robot is ex-
pected to take. Figure 1 illustrates an example. In
the experiments, user utterances and visual infor-
mation are used as inputs, and the prediction accu-
racy of deep learning models for the correspond-
ing action is evaluated.

"https://github.com/riken-
grp/dataloader_reflective_stretch

2We put our new annotations on the same repository.

3The existing study (Tanaka et al., 2024) defined such ac-
tion as a reflective action; however, we rename this as reflec-
tive/considerate action for better understanding.

Dataset

Situation Possible actions (40)

Scenario D Bring a banana

Bring a cup

Video annotation

Scenario C

Scenario B

Scenario A

Video description Clean up snacks

> &
Cloud workers '
[ Scenario______|A__[B__[c |

Bring a banana 3 0 1
5 0 0

Instruction:
Please select all the actions that
you would consider considerate

if performed by the robot in the
situation shown in the video.

Bring a cup
Clean up snacks

Figure 2: Our data extension procedure

While the Do-I-Demand dataset is a valu-
able foundation for practically evaluating reflec-
tive/considerate actions, it also presents several
challenges. First, each scenario is annotated with
only a single corresponding action. However, in
response to ambiguous utterances, the expected
action is not always uniquely determined; multi-
ple support actions may be considered appropriate.
Since users may have different expectations de-
pending on the situation, assigning only one label
fails to capture this diversity. Second, each sce-
nario in the dataset was constructed by a crowd-
worker, which may introduce subjective biases. In
some cases, the annotated actions do not align with
the surrounding context, and there have been in-
stances where the labeled action would be difficult
or impossible for a robot to execute.

3.2 Multiple Action Candidates

To prevent these problems, this study conducted
a reevaluation and improvement of the dataset, as
shown in Figure 2. We conducted a crowdsourc-
ing task on the original 400 scenarios, in which
workers were asked to select multiple considerate
actions from a set of 40 predefined action cate-
gories. Workers were provided with annotation in-
formation based on the video, including the user ’
s utterance, position, held objects, and surround-
ing items, and were instructed to select all applica-
ble action categories. For each scenario, responses
were collected from five workers, and the set of
categories with three or more approvals (a major-

ity) was defined as the new ground-truth label set
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Table 1: The number of action labels per scenario

#action | 0 1 2 3 4 5 6 7 8
#scenario { 45 253 58 21 7 11 4 0 1

for that scenario®.

As a result of this reevaluation, each scenario
now has multiple valid action labels, allowing the
dataset to better reflect the diversity of expecta-
tions regarding considerate actions. For 45 scenar-
ios where no robot action was approved by three
or more workers, the labels were revised to indi-
cate either the absence of a valid action or an inap-
propriate scenario setting. The number of scenar-
ios with at least one approved action became 355,
with an average of 1.54 reflective/considerate ac-
tions per scenario. Through this reevaluation, the
task has been reframed as a more realistic prob-
lem: rather than identifying a correct answer, the
goal is now to flexibly select actions from multiple
plausible candidate actions for a given situation.

3.3 Multiple Action Distribution

An analysis of the new label sets constructed
through the reevaluation revealed significant vari-
ation in the number of action labels assigned to
each scenario. 253 scenarios (71%) had only one
action label, while the remaining 102 had two or
more action labels. In some cases, up to eight ac-
tions were assigned to a single scenario, indicating
that there are many situations in which the reflec-
tive/considerate action is not uniquely determined.
Table 1 presents the number of actions assigned
per scenario.

Many sets consisted of semantically similar ac-
tions in scenarios with multiple action labels. For
example, actions such as “put away the ketchup”
and “put away the cup” form a natural pair of post-
meal cleanup actions. In contrast, there were cases
where functionally distinct actions, such as “throw
away the trash” and “bring a water bottle,” were
simultaneously selected for the same situation.

The number of scenarios in which each robot
action was selected as a ground-truth label is
shown in Table 2. Frequently assigned actions in-
cluded “put away the cup” (37) and “put away the
ketchup” (28), indicating a bias toward specific ac-
tions. In contrast, actions such as “put away the re-
mote control” (5) and “store the grater in the cup-
board” (8) were assigned less frequently. The per-

*Our newly collected data will be publicly available when
we publish this paper.

Table 2: Annotated action distribution

Action | #scenario
bring a banana 15
bring a charging cable 12
bring a cup 18
bring the ketchup 9
bring the delivery package 6
bring a plastic bottle 23
bring the remote control 14
bring the smartphone 26
bring some snacks 23
bring the tissue box 13
put away the charging cable 8
put away the cup 37
put away the ketchup 10
put away the toy car 7
put away the plastic bottle 23
put away the remote control 5
put away the smartphone 6
put away the snacks 28
put away the tissue box 16
throw away the trash 16
bring a can opener 11
bring cooking paper 12
bring a glass 11
bring a grater 9
bring kitchen paper 11
bring a lemon 9
bring olive oil 10
bring a water bottle 24
put the can opener in the cupboard 8
put the cooking paper in the cupboard 9
put the glass in the cupboard 6
put the grater in the cupboard 8
put the kitchen paper in the cupboard 24
put the plastic bottle in the fridge 13
put the plastic wrap in the cupboard 16
put the food container in the microwave 8
put the food container in the fridge 7
put the water bottle in the cupboard 13

ceived importance or frequency of these actions in
daily life likely influences these biases.

We redefine the task as predicting one of the
newly assigned actions for each scenario. Fur-
thermore, we aim to improve prediction accuracy
through the use of reasoning systems.

3.4 Analysis

We analyzed the reconstructed dataset. We found
that many of the user utterances were extremely
short and abstract, often lacking sufficient cues to
determine appropriate actions when considered in
isolation. The average number of characters per
utterance was 11.74, and the average number of to-
kens was 5.66, with some utterances consisting of
only a single word. In particular, utterances such
as “I’m tired” or “It’s painful,” are complex to link
to proactive robotic actions without contextual in-
formation.

Approximately 20% of the utterances contained
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demonstratives implying context-dependent refer-
ences. User utterances that included direct refer-
ences to specific objects accounted for only 39%.
These findings indicate that in most cases, it is
difficult to identify the intended target of support
based on the utterance content alone.

To address these challenges, visual contextual
information, such as the user’s position and pos-
ture, held objects, and surrounding items on ta-
bles or in the kitchen, can be strong cues for in-
ferring appropriate support actions. For example,
when a user says “I’m sleepy” while sitting on the
sofa, the expected robot action differs from when
the same utterance is made while standing in the
kitchen. Moreover, when the user holds an ob-
ject, it may serve as the referent of the utterance,
making it an essential factor in interpreting the im-
plied meaning. In other words, to appropriately
select a reflective/considerate action in response
to an ambiguous utterance, it is essential to in-
corporate not only the linguistic content but also
complementary reasoning based on commonsense
knowledge and contextual understanding of daily
life. In this study, we introduce reasoning models
that integrate such background knowledge to pre-
dict robotic actions in response to ambiguous user
utterances.

4 Action Selection Based on
Commonsense Reasoning

4.1 Inputs and Outputs

This study focuses on the task of enabling a robot
to select reflective/considerate actions based on
ambiguous user utterances and the surrounding
context. Based on the preceding analysis, the task
addressed in this work can be formalized as fol-
lows.

The input consists of the following three infor-
mation:

e user utterance (uttr)
* user position (pOSi)
* objects that the user is holding (has)

These inputs are transformed into natural language
descriptions, and the system outputs one or more
relevant robotic actions from 40 predefined action
classes. However, unlike conventional classifica-
tion tasks, the target data in this study may corre-
spond to multiple valid answer labels. Therefore,
frameworks based on one-to-one classification or

selecting a single correct answer are not applica-
ble. Accordingly, flexible evaluation metrics that
account for the set of ground-truth labels are re-
quired.

4.2 Evaluation Metrics

In this task, there may be multiple appropriate
actions; thus, conventional metrics such as accu-
racy are not suitable for adequately evaluating the
model’s usefulness. To address this issue, we in-
troduce the following three evaluation metrics.
Is-in (partial matching): This metric considers
a prediction correct if at least one of the actions
predicted by the model is included in the ground-
truth set. It reflects scenarios where the robot has
achieved its minimum objective as long as it per-
forms at least one action that meets the user’s ex-
pectations. Here, we assume that the number of
actions predicted by the model is fixed”.

Is-in =

isin(|P; N L 1
D'%S (PanLgl) (D)
P, denotes the set of predicted actions, L, denotes
the set of ground-truth actions, and isin(z) is a
function that returns 1 if x > 1, and O otherwise.
d is a scenario from the evaluation set D.

This metric assesses whether the robot can se-
lect at least one of the reflective/considerate ac-
tions defined in this dataset. However, in practice,
it is also necessary to consider biases arising from
differences in the importance of actions depending
on the situation, as well as the frequency of the re-
quired actions themselves. This study employs the
following two additional metrics in combination.
macro-Recall: For each scenario, we calculate the
recall as the proportion of the ground-truth label
set that is covered by the model’ s predictions, and
then take the average across all scenarios.

|Pan La|

macro-Recall = Z T
d

|D| icD

2

This metric treats scenarios with many ground-
truth labels and those with only one equally, al-
lowing us to evaluate the balance of predictions
across different scenarios.

micro-Recall: This is the overall recall, which
measures the proportion of ground-truth labels
that were covered relative to the total number of

SWe use 1, 3, and 5 in our evaluation.
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Sentence describing

X says "Thank you for the
situation

meal" while on the sofa.

is_afte rr_Nsibefo re

X eats a meal

X puts away the dishes
is_afterrA A
X cooks a meal

X goes shopping
for foods

Action candidates

put away the cup

put away the ketchup
Calculate similaritieg .

bring a banana

Figure 3: Using multi-step reasoning for predicting re-
flective/considerate actions

predicted actions.

> aep |1 Pa N Lal
ZdeD |Ld‘

This metric is heavily influenced by data instances
with a large number of labels, making it suitable
for evaluating the overall coverage of correct ac-
tions across the entire dataset.

micro-Recall =

3

4.3 Selection Criteria

For the action prediction method, we consider ap-
proaches that can assign a ranking over the 40 can-
didate actions. Given the nature of the task, it
is preferable to select multiple candidate actions
rather than just one. To determine the predicted
action set Py from this ranked list, we introduce
the following two settings:

» Top-k: Use the top k actions from the ranked
list as Py (e.g., Top-1, Top-3)

* Plus-k: Select the top-ranked actions up to
the number of ground-truth labels plus £ for
each data instance (e.g., in the Plus-1 setting,
if a scenario has two ground-truth actions, the
top three actions from the ranked list are se-
lected as Py.)

4.4 Multi-step Reasoning using COMET

To determine reflective/considerate actions in re-
sponse to ambiguous utterances, it is often neces-
sary to perform multi-step reasoning of the user’s
intent and their possible future actions. In this sec-
tion, we propose a method that uses commonsense

knowledge based on an event knowledge graph to
perform multi-step reasoning. The system selects
reflective/considerate actions based on the seman-
tic similarity between the final reasoning result
and the candidate actions, as shown in Figure 3.
COMET is an inference engine trained on
a large-scale event knowledge graph called
ATOMIC2020. In this study, we use COMET-ja,
a Japanese-language variant of COMET®. Given
an input event (e.g., “X says ‘Thank you for the
meal” while on the sofa”), it outputs related events
that are likely to occur before or after the input
(e.g., -(is_after)-> "X eats a meal", -(is_before)->
"X puts away the dishes"). The specific procedure
is outlined below:
Multi-step reasoning: We input a sentence into
COMET that integrates the user ' s utterance
(uttr) and contextual information, such as position
(posi) and held object (has). COMET then gener-
ates events that represent possible subsequent ac-
tions. These generated events are used recursively
to perform inference up to a maximum depth of 7.
At each inference step, the previous event is used
as input, and COMET outputs events connected by
a specified relation.
Calculating similarities: We compute the seman-
tic similarity between all generated events and the
40 candidate actions. We use the Japanese ver-
sion of SImCSE (Tsukagoshi et al., 2023) along
with cosine distance. For each action candidate,
the highest similarity score among the generated
events is used as its score, and the actions are
ranked based on these scores. The action with the
highest score is selected as the reasoning result for
the ambiguous utterance.
Inference depth-based penalty: Increasing the
maximum inference depth 7' allows for generat-
ing a broader range of related events; however, it
also increases the risk of logical leaps. To address
this issue, we introduce a depth-based penalty oy
in this study. The following calculation is used:

T
Sm(ldmej) = Sz’m(ld7i,ej)Hat (4)
t=1

Here, [;; denotes a candidate action, e; is an in-
ferred event, and Sim(-) represents the similarity
function. The value of oy is determined using a
leave-one-out method based on the other scenar-
ios. The proposed multi-hop reasoning approach

®We used  comet-v2-gpt2-small-japanese  from

https://github.com/nlp-waseda/comet-atomic-ja
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using COMET has the advantage of providing an
explicit reasoning process, thereby enhancing the
explainability of the robot’s action.

4.5 Direct Reasoning by LLM

Another approach for reasoning reflec-
tive/considerate actions for ambiguous utter-
ances is direct end-to-end reasoning using large
language models (LLMs). In this section, we de-
scribe a method that directly generates appropriate
actions for a given user situation by leveraging
the extensive prior knowledge and contextual
understanding capabilities of LLMs, without
relying on conventional multi-step reasoning.

In this approach, contextual information is pro-
vided as input, such as the user’s utterance (Uttr),
position (posi), and holding objects (has). A
prompt is constructed in which the model is asked
to enumerate all appropriate actions from among
the 40 predefined action candidates. We design a
1-shot prompt for OpenAl * s LLMs as follows:

* Present all 40 executable robot actions in ad-
vance

 Explicitly describe the user’s situation (uttr,
posi, and has)

* Instruct the model to select all appropriate ac-
tion categories and output them using their
action numbers

The LLM can leverage its internal language
knowledge and contextual understanding to selec-
tively extract appropriate actions with this prompt
design. Since the LLM enumerates plausible ac-
tions based on the given situation, we rank the
candidate actions according to the order in which
they are output by the model. The used prompt is
shown in the appendix.

We use GPT-3.5 and GPT-4 as the OpenAl mod-
els in this study. Since the knowledge used to
train COMET is based on GPT-3, using GPT-3.5
allows for a fair comparison of the effectiveness
of multi-step reasoning compared to direct reason-
ing. However, we also include GPT-4 to assess the
state-of-the-art performance on this task.

The primary advantage of this direct reasoning
approach 1is that it does not require the explicit
construction of a knowledge graph or the design of
multi-step reasoning procedures. LLMs can gen-
erate reasonable outputs by capturing the overall
context of a situation. Furthermore, because much
of the implicit commonsense knowledge is embed-

ded within LLMs, they can perform flexible rea-
soning without relying on specific external knowl-
edge sources. On the other hand, this approach
has limitations, such as difficulty in ensuring out-
put consistency and explainability, as well as in
strictly controlling task-specific constraints.

5 Results

5.1 Experimental Settings

In this section, we conduct a comparative evalua-
tion of the proposed methods (Multi-step and Di-
rect) and the two baseline methods (Similarity and
Random). We use the evaluation metrics defined
in Section 4.2—Is-in, macro recall, and micro re-
call—and evaluate each method under the Top-k
(k=1,3,5) and Plus-k (k =0, 1, 3, 5) settings.

As baselines for comparison with the proposed
method, we define the following two approaches:
(1) Similarity baseline, based on semantic simi-
larity; (2) Random ranking, which assigns action
rankings at random. (1) computes the semantic
similarity between the user’s utterance (including
contextual information) and each action candidate,
and generates a ranking based on these similarity
scores. (2) uses a randomly shuffled list of the
40 action candidates as the ranking. This base-
line serves as a lower bound for performance and
offers a reference point for evaluating the task’s
difficulty.

5.2 Experimental Results

Table 3 shows the Is-in results for each method
and evaluation condition. For variations within
the same method, we report only the setting that
achieved the best score due to space limitations.

Among the baselines, the similarity-based
method using only the utterance achieved the
highest score. For the Multi-step method, perfor-
mance improved as the inference depth increased
when using only uttr. However, when using uttr +
posi + has, performance decreased as inference
depth increased. These results suggest that ef-
fective utilization of multi-step inference requires
careful design of both the input information for
reasoning and the depth-based penalty applied
during reasoning.

The Direct approach achieved the higher over-
all scores. A comparison between Direct (GPT-
3.5) and Multi-step shows that, with appropriately
tuned parameters, the multi-step approach can out-
perform the Direct approach. The results for Top-

567



Table 3: Scores of Is-in. We are highlighting the first and the second-best scores.

Method | Top-1 Top-3 Top-5 Plus-0 Plus-1 Plus-3  Plus-5
Multi-step (T'=1, uttr+posi+has) | 0.341 0.583 0.676 0.420 0.552 0.656  0.707
Multi-step (7'=3, uttr) 0473 0.724 0.786 0.549 0.701 0.780  0.837
Direct (GPT-3.5) 0.454 0.648 0.673 0.518 0.620 0.676  0.696
Direct (GPT-4) 0.727 0.808 0.839 0.769 0.820 0.839 0.845
Similarity (uttr) 0454 0.707 0.766  0.532  0.693 0.766  0.828
Random 0.054 0.115 0.175 0.090 0.121 0.180 0.234
Table 4: Scores of macro-Recall
Method [ Top-1 Top-3 Top-5 Plus-0 Plus-1  Plus-3  Plus-5
Multi-step (I'=1, uttr+posi+has) | 0.304 0.506 0.586 0340 0468 0.571 0.618
Multi-step (7'=3, uttr) 0.408 0.622 0.684 0.449  0.598 0.685 0.742
Similarity (uttr) 0395 0.615 0.671 0435 0594 0.673 0.731
Random 0.034 0.079 0.115 0.044 0.068 0.111  0.160

X says, "l wonder if a
message has arrived"
inference

X says, "It's snack time"

* inference

X goes to the kitchen

* inference
X checks the contents of
the refrigerator.

X picks up his smartphone

similar

similar

bring the smartphone put away the cup

OSuccess XFailure

Figure 4: Success/failure cases of multi-step reasoning

5 and Plus-5 indicate that the multi-step reason-
ing approach can prioritize more appropriate ac-
tion candidates in the ranking. However, the per-
formance of the multi-step approach is highly sen-
sitive to parameter settings, and its increased com-
plexity does not always justify the gains in per-
formance. Moreover, Direct (GPT-4) improved
significantly even over the Multi-step, confirm-
ing that recent advancements in LLM performance
have greatly contributed to this task.

Tables 4 and 5 show the results for macro-
Recall and micro-Recall, respectively. The trends
observed in these results were consistent with
those for Is-in. This indicates that, overall, the
dataset constructed in this study exhibits minimal
bias in terms of the importance of actions depend-
ing on the situation and the frequency of the re-
quired actions.

Figure 4 shows success/failure examples of the
multi-step reasoning method. In the success case,
the model correctly associates the event of receiv-
ing a message with the appropriate action involv-
ing a smartphone. In the failure case, although the

model appropriately associates the phrase “snack
time” with “refrigerator,” the distance-based eval-
uation metric fails to select the correct action. An-
other possible explanation is that the distance met-
ric used in this study (SimCSE) may not be en-
tirely suitable for this task. This point warrants
further investigation in future work.

6 Conclusion

In this study, we developed a framework for es-
timating appropriate support actions for domestic
assistive robots, based on ambiguous user utter-
ances and contextual information, to realize re-
flective/considerate actions that users expect from
such systems. We first re-evaluated and extended
the existing Do-I-Demand dataset. By relabel-
ing the original single reflective/considerate ac-
tion with a set of actions that are widely agreed
upon as appropriate by multiple annotators, we
enabled more flexible evaluation. Our dataset re-
flects the real-world assumption that user expecta-
tions are not always uniquely determined by utter-
ances. We also proposed two distinct reasoning
approaches to predict such reflective/considerate
actions. The multi-step reasoning method used a
commonsense inference system (COMET) to gen-
erate related events from the utterance and in-
fer actions. The direct inference approach using
LLMs directly predicted actions by jointly pro-
cessing the utterance and contextual information.
Experimental results demonstrate that both pro-
posed methods outperformed the similarity-based
baseline. The multi-step reasoning method out-
performed GPT-3.5, which uses a knowledge base
comparable to COMET.

When we use the multi-step reasoning ap-
proach, it is crucial to carefully select the knowl-
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Table 5: Scores of micro-Recall

Method | Top-1 Top-3 Top-5 Plus-0 Plus-1 Plus-3  Plus-5
Multi-step (T=1, uttr+posi+has) | 0.221 0.399 0475 0297 0397 0490 0.543
Multi-step (1'=3, uttr) 0.307 0497 0.574 0397 0512 0.605  0.669
Similarity (uttr) 0.294 0486 0.559 0.380  0.505 0.592  0.658
Random 0.035 0.077 0.121 0.064 0.086 0.132  0.181

edge fed into the reasoning process, determine
which relations to use, and design effective prun-
ing strategies for generated event candidates. The
selection method may also be improved through
enhanced similarity measures. Since the informa-
tion in the real world that needs to be attended to
varies depending on the target action, future work
should explore methods that better use knowledge
specifically related to the action candidates.

Limitation

This paper determines reflective/considerate ac-
tions through majority voting based on situational
context. However, it does not include individual
user studies, and therefore it is not possible to eval-
uate whether the selected actions were truly appro-
priate for each individual user. Taking actions that
users perceive as reflective or considerate requires
considering a broader context, not only the sur-
rounding situation, but also user preferences and
the long-term relationship between the robot and
the user.
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A Used prompt

Tables 6 and 7 show the used prompt for direct
reasoning by GPT, and their translation.
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Table 6: Used prompt with an example

role

content

system

BRIINZV LY PR D L F ORI 5. EELEODDOO Ry MWFEITT XD ATHEEZ 7S AZ Y+
T,

SHF ATENE. BURIICIER S TRV R WA L —F IS DFTEITF,
HZ251 2 2—F ORI LT, WLITRT 40 HOTEIA 7Y ofpsa Ry b23ETT 2175 L GlEIRA
HHLATHE R TEIRL TSN,
INSDITHATAVELD LS WKW THRTEITTZ LN TEET,
A%, ATEA 73V 2 2078 7 2 VICHI DIRS N AF/S X I 2 L, BT81h 730 S8 IBUTLTLEE W,
HEYRATE A 72V | DHEOEEIE TEENR L) 2L T EZE W,
[FIBEDHET Lo [MBEHET] 2HALTIZE W,

LURE 40 Bofi#h 730 0—ETY,

[1] XN FFEFF5TL B

[2] REr—TN%E2F->TL 3

[3] 2y 7%FFo>TL 3

[4] 7 F vy TEFE-TL %

[S] EffEEFF->TL 2

[6] Ry PRI AERFSTL %

[7) VEaY2HE-TL 3

[8] A= H&H->TL 3

[9] BHEFZEFF-TL S

[10] 74y > akfizfioTL 3

[11] By — I A% T %

[12] 2y 7% T2

[13] 7 F %y TEF T 3

[14] 3 =H =23

[15] v bR PR T2

[16] VEavzHtrs

[17] 2= k&2

[18] BEF% T2

[19] 74v > afiE RT3

[20] TI%TIFMCAND

[ 11 D 2FE-TL %

2] 7y Fr Iy —bEFESTLS

1 77 A%HESTL 3

] BALE#ER-TL S

] FoFrR—N—FHESTL S

] LEVERSTL S

1 AV =T F AN %ERF-TL 3

] LedndEREoTL 3

[29] 57Ty TRFE-TL 3

[30] KFEERE->TL %

[31] wmYID ZMCLES

321 7y Fxyry—bEfiCLES

[33] 77 A%MIcLES

[34] BALEEMICLES

[35] FvForR—n—%HMIcLE>S

[36] v FR M RBEEICLE S

BN HZ7vI7y 7EMMCLES

[38] &y =% L VIICANS

[39] & v X—%WBIEIC L% 5

[40] KfE&EMIC L5

23
24
25
26
27
28

user

K]
I—HFOFGE: &I iz ?
-V ONE: FvF
Z—HFBFIZL TV KR
I—HFDHLITH B L

assistant

[24] BS L&ER->TL %
[T

user

[2—Foikin]

I—FOFGE: CHNIEFTHET L OH»R?
-V ONE: V7 7
Z—PFRFIILTWDY: KL

L—F DI LNTHBY): RV, Ry PR ML
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Table 7: Used prompt with an example (Translation)

role

content

system

You are an assistant that helps a robot determine considerate actions to support daily life, based on the user’s situation in the
living room.

A considerate action is one that is not explicitly instructed but is helpful to the user.

Given the user’s situation, please select all appropriate considerate actions the robot should take from the list of 40 action
categories shown at the end.

All of these categories can be performed in any situation.

Your response should output only the action category and its assigned number, one per line.

If none of the categories are appropriate, output only "None applicable".

After completing the response, output [End of response].

Below is the list of 40 action categories:

[1] Bring a banana

[2] Bring a charging cable

[3] Bring a cup

[4] Bring ketchup

[5] Bring a delivery package

[6] Bring a plastic bottle

[7] Bring a remote control

[8] Bring a smartphone

[9] Bring snacks

[10] Bring a tissue box

[11] Put away the charging cable

[12] Put away the cup

[13] Put away the ketchup

[14] Put away the toy car

[15] Put away the plastic bottle

[16] Put away the remote control

[17] Put away the smartphone

[18] Put away the snacks

[19] Put away the tissue box

[20] Throw trash into the bin

[21] Bring a can opener

22] Bring cooking sheet

] Bring a glass

] Bring a grater

] Bring kitchen paper

] Bring a lemon

] Bring olive oil

] Bring a potato

[29] Bring plastic wrap

[30] Bring a water bottle

[31] Put the can opener in the cabinet
[32] Put the cooking sheet in the cabinet
[33] Put the glass in the cabinet

[34] Put the grater in the cabinet

[35] Put the kitchen paper in the cabinet
[36] Put the plastic bottle in the refrigerator
[37] Put the plastic wrap in the cabinet
[38] Put the container in the microwave
[39] Put the container in the refrigerator
[40] Put the water bottle in the cabinet

[
[23
[24
[25
126
[27
[28

user

[User Situation]

User utterance: Where did I put it away?
User location: Kitchen

Item in user’s hand: Daikon radish
Items near the user: None

assistant

[24] Bring a grater
[End of response]

user

[User Situation]

User utterance: I wonder if this will be enough to last until morning.
User location: Sofa

Item in user’s hand: None

Items near the user: Bread, plastic bottle
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