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Abstract
User enjoyment is central to developing con-
versational AI systems that can recover from
failures and maintain interest over time. How-
ever, existing approaches often struggle to de-
tect subtle cues that reflect user experience.
Large Language Models (LLMs) with reason-
ing capabilities have outperformed standard
models on various other tasks, suggesting po-
tential benefits for enjoyment detection. This
study investigates whether models with reason-
ing capabilities outperform standard models
when assessing enjoyment in a human-robot
dialogue corpus at both turn and interaction lev-
els. Results indicate that reasoning capabilities
have complex, model-dependent effects rather
than universal benefits. While performance was
nearly identical at the interaction level (0.44 vs
0.43), reasoning models substantially outper-
formed at the turn level (0.42 vs 0.36). No-
tably, LLMs correlated better with users’ self-
reported enjoyment metrics than human annota-
tors, despite achieving lower accuracy against
human consensus ratings. Analysis revealed
distinctive error patterns: non-reasoning mod-
els showed bias toward positive ratings at the
turn level, while both model types exhibited
central tendency bias at the interaction level.
These findings suggest that reasoning should
be applied selectively based on model architec-
ture and assessment context, with assessment
granularity significantly influencing relative ef-
fectiveness.

1 Introduction

As conversational AI increasingly becomes part
of daily life, from customer support bots to per-
sonal assistants, it is crucial to make interactions
with conversational systems enjoyable, since user
enjoyment determines both immediate and future
engagement (Heerink et al., 2008, 2010; Ling et al.,
2021; Irfan et al., 2024a). To that end, measuring
user experience, such as enjoyment or satisfaction,
at both turn and dialogue-level granularity is re-

quired for user alignment (Bodigutla et al., 2020).
Predicting user enjoyment is particularly chal-

lenging due to its subjective and variable nature
(Deriu et al., 2021). Traditional models struggle to
cope with this variability, but large language mod-
els (LLMs) offer an attractive solution with their
ability to recognize subtle conversational cues re-
lated to enjoyment more effectively than traditional
models relying on handcrafted features (Pereira
et al., 2024; Lin et al., 2024). The practical de-
ployment of conversational AI systems demands
automated evaluation metrics that can be run fre-
quently and efficiently, without requiring human
annotators (Mehri and Eskenazi, 2020).

One of the design choices for using LLMs to
predict enjoyment is whether to have them reason
explicitly (e.g., via chain-of-thought (Wei et al.,
2022)) and when to attempt to predict enjoyment
directly. While explicit reasoning can result in
improved performance on complex interactions and
enable user-aware interactions (Wu et al., 2024;
Rahimi et al., 2025), it can lead to overthinking,
increasing inference time, and output length (Sui
et al., 2025). This trade-off highlights the value of
LLMs’ internal consistency, which in some settings
exceeds that of human annotators, particularly in
structured evaluation tasks (Ji et al., 2023). This
raises the question of when LLMs must reason to
improve the prediction of user enjoyment.

Despite advances in LLM capabilities, we have
not found prior work comparing reasoning and non-
reasoning models to detect the quality of user ex-
perience, particularly at different levels of gran-
ularity from overall conversation enjoyment to
turn-level interactions. This research bridges that
gap by benchmarking four state-of-the-art models:
Claude-3.7-Sonnet (reasoning and non-reasoning),
GPT-4.5-Preview (reasoning), o1 (reasoning), and
Gemini-2.0-Flash (reasoning and non-reasoning)
on the Human-Robot Interaction Conversational
User Enjoyment Scale (HRI CUES) dataset (Irfan
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et al., 2024a,b), expert-annotated with enjoyment
ratings both per turn and overall conversation lev-
els, with the following research questions:

RQ1 Do large language models with reasoning ca-
pabilities produce more accurate predictions
of enjoyment ratings in conversations com-
pared to their non-reasoning counterparts?

RQ2 How does the effectiveness of reasoning vs.
non-reasoning models differ when predicting
enjoyment at different levels of granularity
(turn-level, interaction-level, and overall en-
joyment)?

RQ3 Which error patterns characterize reasoning
vs. non-reasoning models in predicting enjoy-
ment ratings, particularly for edge cases?

RQ4 How do model-based enjoyment ratings differ
from human annotations in terms of consis-
tency, accuracy, and correlation with users’
self-reported enjoyment metrics?

Our experiments provide the first systematic
comparison of reasoning and non-reasoning LLMs
for multi-level enjoyment detection. In summary,
our key contributions include a systematic analy-
sis of the impact on turn-level, interaction-level,
and overall enjoyment prediction, an identification
of error patterns unique to each approach (reason-
ing vs. non-reasoning), and an assessment of how
closely model-predicted enjoyment aligns with hu-
man evaluations.

2 Related Work

User enjoyment is a critical factor for conversa-
tional AI, affecting both immediate engagement
and long-term adoption (O’Brien and Toms, 2008;
Heerink et al., 2008, 2010; Ling et al., 2021; Irfan
et al., 2024a). Unlike task-oriented metrics, enjoy-
ment captures the affective value of interactions,
presenting unique measurement challenges due to
its subjective nature (Pereira et al., 2024). The ris-
ing popularity of conversational agents in everyday
applications has made enjoyment a key determinant
of user retention and overall satisfaction with these
systems. Studies suggest that enjoyment metrics
may be more predictive of long-term user engage-
ment than traditional task completion measures in
open-domain dialogue systems (Deriu et al., 2021).

2.1 Measuring Enjoyment in Conversations

The Human-Robot Interaction Conversational User
Enjoyment Scale (HRI CUES) operationalizes en-
joyment at both turn-level and conversation-level

granularity, distinguishing five levels from dis-
comfort to immersion (Irfan et al., 2024a). Joint
turn and dialogue-level assessment approaches
have demonstrated complementary value (Bod-
igutla et al., 2020), though annotator agreement
remains moderate (ICC 0.47-0.72) (Irfan et al.,
2024a). Alternatives include unsupervised and
reference-free evaluation metric for dialogue as-
sessment (Mehri and Eskenazi, 2020), while stan-
dardized benchmarks, such as Generation, Evalua-
tion, and Metrics (GEM) (Gehrmann et al., 2021)
enable systematic comparison across approaches.
Researchers have observed that contextual factors,
including a user’s prior experience with conver-
sation systems, significantly influence enjoyment
ratings, highlighting the need for personalized eval-
uation methods (See et al., 2019). Emerging evi-
dence suggests that interaction consistency across
multiple turns may be as important to perceived
enjoyment as the quality of individual responses
(Finch and Choi, 2020).

2.2 LLMs for Affective Assessment
Text-based LLMs have demonstrated significant
capabilities in evaluating multidimensional con-
versational qualities, including engagement, coher-
ence, and empathy, without requiring multimodal
inputs (Atuhurra et al., 2024; Liu et al., 2024). Re-
cent research highlights LLMs’ ability to predict
user enjoyment in interactive contexts based solely
on textual exchanges (Janssens et al., 2025), with
their assessments showing stronger correlation with
self-reported experiences than human annotators
(Pereira et al., 2024). Moreover, survey-based ev-
idence shows that in structured evaluation tasks,
LLMs can produce more internally consistent re-
sults than human raters (Ji et al., 2023). This con-
sistency advantage becomes particularly valuable
in deployment scenarios where continuous, auto-
mated evaluation is required (Mehri and Eskenazi,
2020). This textual predictive capacity enables con-
tinuous, real-time affective assessment throughout
conversational exchanges, creating opportunities
for dynamic adaptation strategies that maintain en-
joyment (Janssens et al., 2025).

Despite these advancements, text-based LLMs
face distinct challenges in affective assessment.
They operate with information constraints com-
pared to human annotators who naturally inte-
grate contextual factors beyond text (Irfan et al.,
2025; Pereira et al., 2024), and their evaluations
may reflect underlying biases present in training
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corpora (Bommasani et al., 2021; Olteanu et al.,
2019). Post-deployment feedback mechanisms rep-
resent one promising approach to address these text-
specific limitations (Hancock et al., 2019). While
supplementary non-lexical textual features can en-
hance affective detection capabilities (Pereira et al.,
2024), the core strength of text-only models lies
in their ability to extract meaningful emotional in-
sights from linguistic patterns, word choice, and
conversational dynamics.

2.3 Reasoning vs. Non-Reasoning Approaches

Chain-of-thought prompting has demonstrated im-
provements on analytical tasks (Wei et al., 2022;
Zhang et al., 2023; Wu et al., 2024; Qu et al., 2025),
but its value for subjective assessments remains un-
clear. While reasoning might help identify subtle
emotional cues (Liu et al., 2024), it increases infer-
ence time and output length (Sui et al., 2025; Liu
et al., 2025), creating a critical efficiency-accuracy
trade-off. For subjective assessments, explicit rea-
soning may actually harm performance (Fu et al.,
2022). In addition, LLMs may implicitly leverage
forms of reasoning without explicit prompting, rais-
ing questions about the necessity of computation-
ally expensive reasoning approaches for affective
assessment tasks (Sui et al., 2025).

The capabilities of LLMs to explain model deci-
sions has advanced interpretable evaluations (Lin
et al., 2024), but comprehensive studies on how
reasoning approaches affect enjoyment assessment
alignment with human perception are still needed
(Shanahan, 2024).

Our study addresses existing gaps by system-
atically comparing reasoning and non-reasoning
approaches across multiple granularity levels, an-
alyzing error patterns, and determining alignment
between model-based and human-assessed enjoy-
ment ratings.

3 Methodology

Building on prior work that demonstrates LLM-
based user enjoyment detection in human-robot
conversations can outperform human annotators
(Pereira et al., 2024), and motivated by the strong
performance of recent reasoning models on a vari-
ety of tasks (Wu et al., 2024; Qu et al., 2025), this
work evaluates whether such models enhance ac-
curacy in detecting user enjoyment for interactions
with robots.

3.1 Dataset and Enjoyment Metrics

Similar to (Pereira et al., 2024), we use a previously
validated dataset (Irfan et al., 2024a,b) consisting
of open-domain conversations between older adults
and a social robot. The dataset contains 590 conver-
sational turns across 25 participants, with interac-
tions averaging 7 minutes in length. These conver-
sations were originally annotated using the Human-
Robot Interaction Conversational User Enjoyment
Scale (HRI CUES) with five levels (Irfan et al.,
2024a): Level 1: Very low enjoyment — Discom-
fort and/or frustration), Level 2: Low enjoyment
— Boredom or interaction failure), Level 3: Neu-
tral enjoyment — Politely keeping up the interac-
tion), Level 4: High enjoyment — Smooth and
effortless interaction), and Level 5: Very high en-
joyment — Immersion in the conversation and/or
deeper connection with the robot). The annotations
were conducted by three expert raters (mean age
= 30, SD = 2.94) who are PhD-level researchers
with complementary and relevant backgrounds (Ir-
fan et al., 2024a). Annotator 1 specializes in user
enjoyment research, Annotator 2 focuses on HRI
with older adults and cognitive science, and Anno-
tator 3 specializes in multimodal HRI and cogni-
tive science. The annotators underwent systematic
alignment procedures, including analysis of three
exemplar videos and four hours of collaborative
discussions to establish consistent annotation cri-
teria and scale interpretation guidelines. Extend-
ing the analysis in (Pereira et al., 2024), which
focuses on turn-level enjoyment (individual dia-
logue exchanges per turn) and correlations with
self-reported user enjoyment metrics (satisfaction,
fun, interestingness, and strangeness of the conver-
sation), we also analyze full-interaction enjoyment
patterns and overall enjoyment prediction. This
multi-level approach enables us to examine how
models perform at different temporal scales: the
granular detection of moment-to-moment enjoy-
ment states in comparison to the tracking of enjoy-
ment trajectories across complete interactions. The
human annotations from these three expert raters
serve as our ground truth for evaluating model per-
formance.

3.2 Model Selection and Prompting Strategy

To investigate the impact of reasoning capabili-
ties on enjoyment detection, we selected six LLM
models representing different architectures and rea-
soning approaches. The models with built-in rea-
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soning capabilities included Claude 3.7 Sonnet
Reasoning (Anthropic, 2025) (Anthropic, 2025-02-
19 version), Gemini 2.0 Flash Reasoning (Google
DeepMind, 2025) (Google - thinking-exp-01-21
version), and o1 (OpenAI, 2024) (OpenAI, 2024-
12-17 version). The models without built-in
reasoning capabilities included Claude 3.7 Son-
net Non-Reasoning (Anthropic, 2025) (Anthropic,
2025-02-19 version), Gemini 2.0 Flash Non-
Reasoning (Google DeepMind, 2025) (Google),
and GPT-4.5 (OpenAI, 2025) (OpenAI, 2025-02-
27 version). This balanced design allows for direct
comparison between reasoning and non-reasoning
models while controlling for model architecture.

For models without built-in reasoning capabili-
ties, we implemented a specialized prompting tech-
nique that explicitly instructed them to employ a
step-by-step reasoning process before making final
judgments. Similarly, reasoning-capable models
were prompted to rate enjoyment while explicitly
reasoning through their decisions. The prompts
for all analysis levels used in both experimental
conditions are provided in Appendix A, which also
includes examples of reasoning quality and tex-
tual analysis from Claude 3.7 Reasoning, Gemini
2.0 Flash Reasoning and o1 models. These exam-
ples compare reasoning approaches across different
model architectures and illustrate both the prompt-
ing methodology and the differences in reasoning
processes that contribute to the performance varia-
tions observed in our results. To ensure response
consistency, we conducted preliminary testing by
running each model multiple times on sample data
to observe behavioral patterns and verify stability
of results before conducting the main experiment.
This consistent approach was applied across both
turn-by-turn, interaction-level, and overall enjoy-
ment assessments to ensure fair comparison.

We evaluated enjoyment at 3 granularity levels:
1. Turn-by-Turn Level:

• Focuses on individual exchanges
• History up to the current turn (Past +

Present only).
2. Interaction Level:

• Focuses on individual exchanges
• Entire history (Past+Present+Future).

3. Overall Level:
• Evaluates the overall conversation expe-

rience. Single enjoyment rating.
• Entire history.

This multi-level approach allows us to exam-
ine whether reasoning capabilities have varying

impacts at different assessment granularities and
whether per-turn predictions accumulate differently
than holistic judgments. By comparing predictions
made with limited versus complete context, and
when rating individual turns versus the entire con-
versation, we gain insight into how local dialogue
features contribute to global conversation quality.
All ratings used the same 5-point enjoyment scale
(Section 3.1), enabling direct comparisons across
assessment levels.

3.3 Evaluation Framework
Our evaluation employed multiple metrics: accu-
racy (exact matches between model and ground
truth ratings), relative performance (model-to-
human accuracy ratio), and Intraclass Correla-
tion Coefficient (ICC) for inter-rater agreement.
We compared reasoning-enhanced models against
their non-reasoning counterparts across turn-level,
interaction-level, and overall enjoyment assess-
ments. Additionally, we analyzed correlations be-
tween model assessments and users’ self-reported
experiences, and examined error patterns through
confusion matrices, focusing on edge cases and
rating distributions.

4 Results

This section presents an analysis of different LLMs
in conversation quality assessment tasks, focusing
on reasoning capabilities and enjoyment detection.
We evaluated both standard (non-reasoning) mod-
els and reasoning-enhanced versions, comparing
their performance at the turn-by-turn and interac-
tion (full dialogue/conversation) levels.

4.1 Model Performance on Enjoyment
Detection

Figure 1 shows the absolute performance of models
on enjoyment detection relative to the human base-
line. At the interaction level, all models approached
but did not exceed human performance (0.46) rep-
resenting average annotator accuracy against con-
sensus ratings, with Claude 3.7 (non-reasoning)
demonstrating the strongest dialogue-level accu-
racy at 0.45, closely followed by Gemini 2.0
(non-reasoning) and o1 (reasoning) at 0.44. GPT-
4.5 (non-reasoning) achieved 0.42, while Claude
3.7 (reasoning) and Gemini 2.0 (reasoning) both
showed 0.42 and 0.41 accuracy, respectively. At
the turn level, all models consistently performed
below the human baseline, with Claude 3.7 (non-
reasoning), Claude 3.7 (reasoning), Gemini 2.0
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Figure 1: Model performance on enjoyment detection.
Bars represent accuracy for each model, with dashed
line indicating human annotators as baseline (0.46).
Green bars show turn-level accuracy; blue bars show
interaction-level accuracy.

(reasoning), and o1 (reasoning) all performing sim-
ilarly with accuracies ranging from 0.41 to 0.42.
GPT-4.5 (non-reasoning) showed moderate turn-
level performance at 0.36, while Gemini 2.0 (non-
reasoning) demonstrated the lowest turn-level accu-
racy at 0.30. This pattern reveals that while models
can approach human performance when evaluating
entire conversations, they struggle more with as-
sessing individual turns. A Mann-Whitney U test
comparing interaction-level versus turn-level per-
formance across all models confirmed significantly
higher accuracy at the interaction level (M = 0.43)
compared to turn-by-turn evaluation (M = 0.39;
U = 4.0, p = 0.03).

The impact of reasoning capability varied no-
tably between model architectures and assess-
ment granularities. For Gemini 2.0, enabling rea-
soning substantially enhanced turn-level accuracy
from 0.30 to 0.41, but simultaneously reduced
interaction-level accuracy from 0.45 to 0.41. Con-
versely, for Claude 3.7, reasoning had a mild but
consistently negative effect, with both interaction-
level accuracy dropping from 0.45 to 0.42 and turn-
level accuracy slightly decreasing from 0.42 to 0.41.
When examining differences between reasoning
and non-reasoning models across both assessment
levels combined, statistical analysis showed no sig-
nificant difference between the two model types
(U = 13.0, p = 0.49). However, this overall simi-
larity masks important differences at specific gran-
ularities: reasoning models showed a clear advan-
tage at the turn level while performing comparably
at the dialogue level. These findings indicate that
reasoning effectiveness is model-dependent and in-
volves trade-offs between assessment granularities

rather than providing universal benefits.
Overall, these findings suggest that while cur-

rent LLMs can approach human-level performance
when evaluating conversation enjoyment at the in-
teraction level, they still consistently lag behind
human annotator capabilities at the more granular
turn-by-turn assessment. The differential impact
of reasoning across model architectures and assess-
ment levels emphasizes that reasoning capabilities
offer specific advantages for turn-level evaluation
while maintaining comparable interaction-level per-
formance.

4.2 Inter-Annotator Agreement Analysis

Figure 2: Inter-Annotator Agreement (ICC) values
across different evaluator groups at turn-by-turn (green)
and interaction (blue) levels. The dashed line indi-
cates the human baseline (0.44). Non-reasoning models
show the highest agreement, while mixed human-model
groups demonstrate decreased agreement.

Our analysis of inter-annotator agreement us-
ing Intraclass Correlation Coefficient (ICC) values
revealed notable patterns across evaluator groups
(Figure 2). We employed ICC(3,1) - a two-way
mixed effects model that measures absolute agree-
ment between fixed raters, following established
guidelines for ICC selection and reporting (Koo
and Li, 2016). The three human annotators demon-
strated consistent ICC values of 0.44 at both turn
and interaction levels, serving as our baseline.

All model groups exhibited substantially higher
internal agreement than human annotators, with
non-reasoning models achieving the highest ICC
values (0.64 at the turn-level and 0.62 at the
interaction-level). Reasoning-enabled models
showed strong but slightly lower agreement (0.56
at the turn-level and 0.60 at the interaction-level),
while all models collectively maintained ICC val-
ues of 0.61 at both levels. Models show higher
internal consistency due to systematic evaluation,
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not superior accuracy. They apply consistent crite-
ria while human judgment naturally varies through
subjective interpretation. Interestingly, combin-
ing human annotators with LLMs consistently de-
creased overall agreement. The most noticeable
drops occurred when human annotators were paired
with reasoning models (0.37 at the turn-level and
0.39 at the interaction-level) or with non-reasoning
models (0.40 at the turn-level and 0.41 at the
interaction-level).

These patterns suggest fundamental differences
in evaluation approaches between humans and mod-
els. While models demonstrate higher internal con-
sistency, the decreased ICC in mixed groups in-
dicates they may be applying assessment criteria
that differ from human annotators. This divergence
becomes particularly evident in collaborative eval-
uation scenarios, where the differing approaches
result in lower overall agreement.

4.3 Average Performance by Group

Figure 3: Average performance by group comparing rea-
soning and non-reasoning models across interaction and
turn levels. Error bars indicate standard errors across
models within each group.

When aggregating results by model type (Fig-
ure 3), we observed distinct performance patterns
across assessment granularities. At the interaction
level, both reasoning and non-reasoning models
showed nearly identical performance (0.43 vs 0.44
accuracy), with non-reasoning models maintaining
a slight edge. However, at the turn-by-turn level,
we found a notable difference, with reasoning mod-
els achieving substantially higher accuracy (0.42)
compared to non-reasoning models (0.36).

The performance gap between interaction and
turn-level assessments varied considerably between
model types. For non-reasoning models, there was
a substantial difference between interaction-level
(0.44) and turn-level (0.36) performance, with high

variance in performance for turn-level assessment.
In contrast, reasoning models showed much more
consistent performance across assessment levels,
with only a minimal difference of 0.01 points be-
tween interaction-level (0.43) and turn-level (0.42)
accuracy.

These findings reveal that reasoning capabili-
ties have a nuanced impact on model performance.
While showing minimal effect on interaction-level
assessments, reasoning substantially enhances turn-
level evaluation and provides more consistent per-
formance across assessment granularities. Al-
though overall performance shows no significant
difference between reasoning and non-reasoning
approaches, reasoning capabilities provide a clear
advantage specifically for turn-level accuracy.

4.4 Misclassification Patterns

Figure 4: Misclassification patterns for non-reasoning
vs. reasoning models at different levels of granular-
ity: turn-by-turn (top) and interaction (bottom). Each
heatmap shows predicted ratings (columns) for each true
rating (rows), with color intensity indicating proportion.

Analysis of model prediction patterns reveals
distinct error modes between reasoning and non-
reasoning models across assessment levels (Fig-
ure 4). At the turn-by-turn level, non-reasoning
models show a clear bias toward rating turns as
high enjoyment (4), including rating more than
half (0.57) of the turns that actually contained very
low enjoyment (1) as high enjoyment (4). Non-
reasoning models consistently predict rating 4 for
actual ratings 2-5, with proportions of 0.49, 0.44,
0.48, and 0.48 respectively. In contrast, reason-
ing models show more distributed predictions, with
lower reliance on rating 4 and increased predictions
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of rating 3, particularly for actual low enjoyment
turns.

At the interaction level, both model types exhibit
a strong central tendency, predominantly predicting
rating 3 across most actual ratings. Non-reasoning
models show a pronounced bias for true rating 1,
with 0.71 of these predictions assigned to rating
3, while reasoning models split predictions more
evenly between ratings 2 (0.29) and 3 (0.57) for
actual rating 1. For high enjoyment conversations
(true rating 5), non-reasoning models favor rating
3 (0.55) over the correct rating 5 (0.09), while rea-
soning models show similar patterns with 0.48 pre-
dicting rating 3 and only 0.06 correctly identifying
rating 5.

Both model types struggle with extreme ratings
at the interaction level, showing low accuracy for
very low enjoyment (0.14 for both models) and
very high enjoyment (0.09 for non-reasoning, 0.06
for reasoning models). Reasoning models demon-
strate more balanced prediction distributions across
the rating scale, while non-reasoning models show
stronger biases toward specific ratings. This ten-
dency to avoid extreme judgments and gravitate
toward neutral to moderately high enjoyment pre-
dictions likely contributes to their lower accuracy
compared to human annotators.

4.5 Overall Enjoyment Prediction
Performance

Figure 5: Model performance comparison for overall
enjoyment prediction. A single unified judgment is
provided of the entire conversation’s enjoyment on the
5-point scale, using full interaction history.

Figure 5 illustrates the comparison between the
performance of reasoning and non-reasoning mod-
els for holistic conversation enjoyment assessment,

when given the full conversation history. Reason-
ing models demonstrated moderately higher aver-
age accuracy (0.49, SD = 0.04) compared to non-
reasoning models (0.45, SD = 0.10), suggesting a
modest benefit from reasoning capabilities.

Individual model performance varied consider-
ably within each group. Among non-reasoning
models, GPT-4.5 achieved the highest accuracy
(0.55), while Gemini 2.0 performed notably below
average (0.32). The reasoning models showed less
variation, with Claude 3.7 and o1 both performing
above average (0.52 each), while Gemini 2.0 again
performed below average (0.44).

These findings indicate that while reasoning
capabilities generally enhance prediction perfor-
mance, model architecture and underlying capabili-
ties remain crucial factors for successful enjoyment
prediction, potentially as important as explicit rea-
soning abilities. The smaller standard deviation in
reasoning models (0.04 vs 0.10) suggests more con-
sistent performance across different model archi-
tectures when reasoning capabilities are employed.

4.6 Correlation with Self-reported Metrics
Analysis of correlations between model assess-
ments and users’ self-reported enjoyment metrics
revealed distinct patterns across metrics. Satisfac-
tion emerged as the most consistently correlated
metric, with five out of six models showing sig-
nificant correlation at either the turn or interac-
tion level, as shown in Figure 6. The figure illus-
trates how different metrics, i.e., satisfaction, fun,
interestingness, and strangeness, correlate differ-
ently across model types and levels of granularity.
It is important to note that human annotators did
not significantly correlate with any of the metrics,
whereas averaging their results correlated only with
strangeness (r = 0.42, p = 0.04).

At the turn-by-turn level, Claude 3.7 (non-
reasoning) demonstrated the most comprehensive
correlation profile, with significant associations
with satisfaction (r = 0.44, p = 0.029), fun (r = 0.44,
p = 0.030), and perceived strangeness (r = 0.40, p
= 0.049). Gemini 2.0 (non-reasoning) exhibited a
highly significant correlation with satisfaction (r =
0.56, p = 0.004), while GPT-4.5 (non-reasoning)
showed a significant correlation with satisfaction
(r = 0.50, p = 0.01). Claude 3.7 (reasoning) corre-
lated significantly with fun (r = 0.44, p = 0.026),
and Gemini 2.0 (reasoning) showed a significant
correlation with satisfaction (r = 0.40, p = 0.047).

At the interaction level, Claude 3.7 (non-
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Figure 6: Correlation significance between model as-
sessments and user self-reports. Color intensity indi-
cates significance level (darker = stronger significance).
The heatmap shows significance levels for human an-
notators (green) and across enjoyment metrics at turn
(green) and interaction-levels (blue)

reasoning) showed a highly significant correla-
tion with satisfaction (r = 0.51, p = 0.009), while
Gemini 2.0 (reasoning) demonstrated a significant
correlation with the same metric (r = 0.48, p =
0.014). GPT-4.5 (non-reasoning) uniquely corre-
lated with the strangeness metric (r = 0.47, p =

0.016). For overall enjoyment level, Claude 3.7
(non-reasoning) (r = 0.48, p = 0.014), GPT-4.5
(non-reasoning) (r = 0.44, p = 0.026), and Gemini
2.0 (reasoning) (r = 0.52, p = 0.007) all showed sig-
nificant correlations with satisfaction, while Gem-
ini 2.0 (non-reasoning) only correlated with the
interestingness metric (r = 0.41, p = 0.042) and
GPT-4.5 (non-reasoning) with the strangeness met-
ric (r = 0.48, p = 0.016).

The impact of reasoning capabilities varied by
model architecture. For Claude 3.7, enabling rea-
soning reduced correlation strength with satisfac-
tion and eliminated correlations with strangeness
at the turn level, while maintaining a significant
correlation with fun (r = 0.44, p = 0.026). Con-
versely, for Gemini 2.0, reasoning improved cor-
relation with satisfaction at the interaction level (r
= 0.48, p = 0.014 vs r = 0.25) while reducing it at
the turn level (r = 0.40, p = 0.047 vs r = 0.56, p =
0.004). Notably, o1 (reasoning) showed no statisti-
cally significant correlations with user self-reports
despite its strong performance on accuracy metrics,
suggesting a potential disconnect between its eval-
uation approach and users’ subjective experience
of conversations.

5 Discussion

Our analysis addresses four key research questions
about reasoning capabilities in LLMs for conversa-
tion enjoyment prediction.

RQ1: Do reasoning models produce more
accurate predictions? Reasoning capabilities
demonstrate model-dependent effects rather than
universal benefits. At the overall enjoyment level,
reasoning models showed moderately higher av-
erage accuracy (0.49 vs 0.45 for non-reasoning
models) with notably lower variance (SD = 0.04
vs 0.10), indicating more consistent performance
across different model architectures. However, in-
dividual model differences were pronounced: rea-
soning significantly improved Gemini 2.0’s turn-
level accuracy (0.30 to 0.41) but slightly decreased
Claude 3.7’s performance. This suggests reasoning
interacts with underlying model architectures in
complex ways, challenging the assumption that ex-
plicit reasoning universally enhances performance.

RQ2: How does effectiveness differ across
granularity levels? Reasoning models substan-
tially outperformed at the turn level (0.42 vs 0.36),
while non-reasoning models performed slightly bet-
ter at the interaction level (0.44 vs 0.43). Although
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all models approached but did not exceed the hu-
man baseline (0.46), this indicates that reasoning
processes offer particular value for granular judg-
ments requiring detailed analysis of specific con-
versational turns. Notably, reasoning models main-
tained consistent evaluation quality across granu-
larity levels compared to non-reasoning models.
While these patterns suggest meaningful differ-
ences, overall statistical comparison between rea-
soning and non-reasoning approaches showed no
significant difference (p = 0.49), indicating the ben-
efits are context-dependent rather than universal.

RQ3: What distinctive error patterns
emerge? At the turn level, non-reasoning models
showed a clear bias toward rating 4, while reason-
ing models distributed predictions more evenly. At
the interaction level, both exhibited a central ten-
dency toward rating 3, with reasoning models show-
ing more distributed predictions for extreme cases.
Both types struggled with extreme ratings (1 and
5), suggesting reasoning processes may introduce
nuanced considerations that moderate judgments
at the extremes.

RQ4: How do model ratings compare to hu-
man annotations? LLM models demonstrated
higher internal consistency than human annotators
(0.64 vs 0.44 at turn level for non-reasoning mod-
els) but generally lower accuracy when compared
with annotators. Combining human annotators with
models consistently decreased overall agreement,
with the lowest ICC occurring when humans were
paired with reasoning models (0.37 at turn level).

Correlation analysis with users’ self-reported
metrics revealed satisfaction as the most con-
sistently correlated metric. Claude 3.7 (non-
reasoning) demonstrated the most comprehensive
correlation profile, with significant associations
with satisfaction (r = 0.44, p = 0.029 turn level,
r = 0.51, p = 0.009 interaction level), fun (r = 0.44,
p = 0.030), and perceived strangeness (r = 0.40,
p = 0.049). For Gemini 2.0, reasoning improved
correlation with satisfaction at the interaction level
(r = 0.48, p = 0.014 vs r = 0.25) while reducing it
at the turn level (r = 0.40, p = 0.047 vs r = 0.56, p
= 0.004). Notably, o1 (reasoning) showed no sig-
nificant correlations with user self-reports despite
strong accuracy metrics, indicating a disconnect be-
tween its evaluation approach and user experience.

These findings align with (Pereira et al., 2024)
regarding similar performance patterns. Our work
extends this prior research by systematically com-
paring reasoning capabilities across multiple gran-

ularity levels, revealing that reasoning benefits de-
pend on both model architecture and assessment
context.

6 Conclusion

This study shows that reasoning capabilities in
LLMs work differently depending on the model
architecture, challenging the common belief that
explicit reasoning always improves performance.
The model-dependent effects we observed suggest
that reasoning processes may strengthen or weaken
existing model abilities, rather than providing con-
sistent benefits across all systems. The better per-
formance of reasoning models at turn-level evalua-
tion likely comes from their ability to break down
conversation patterns into smaller parts—a process
that becomes less helpful when making overall con-
versation judgments.

Our finding that models achieve higher inter-
nal consistency than humans while showing lower
accuracy reveals a basic problem in automated eval-
uation systems. This pattern suggests that models
apply consistent but wrong standards, being pre-
cise but inaccurate. The disconnect between o1’s
strong accuracy metrics and poor correlation with
user self-reports shows this problem, indicating
that technical performance metrics may not cap-
ture what users actually care about in conversation
quality.

These findings have important effects for con-
versation system development and evaluation meth-
ods. Practitioners should choose reasoning-enabled
models based on specific use cases rather than as-
suming they always work better, with reasoning par-
ticularly valuable for detailed analysis tasks. The
strong correlation between model assessments and
user satisfaction scores, despite accuracy problems,
suggests that LLMs may capture how users actu-
ally feel in ways that standard measures miss. This
work moves the field away from one-size-fits-all
approaches toward more thoughtful, context-aware
deployment of reasoning capabilities in conversa-
tion analysis systems.

7 Limitations

Our study’s limitations include using a specific
dataset of human-robot conversations with older
adults and evaluating a limited set of models and
reasoning implementations. The exclusive use of
proprietary models limits reproducibility and po-
tential training data overlap cannot be ruled out.
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Future work should explore: (1) more sophisticated
reasoning approaches tailored for conversation en-
joyment assessment; (2) hybrid models combining
strengths of different architectures; (3) methods
addressing the conservative bias toward neutral rat-
ings; (4) investigating why certain models show
stronger correlations with user-reported metrics de-
spite not always achieving the highest accuracy;
and (5) incorporating open-source models to en-
hance reproducibility. Understanding how model
scores relate to long-term user engagement would
provide valuable insight into their real-world appli-
cability. However, it is important to note that us-
ing large language models for enjoyment detection
raises important ethical considerations, particularly
around privacy, consent, and emotional inference.
There is a risk of emotional manipulation, biased
predictions across different user groups, and over-
reliance on potentially inaccurate interpretations of
user sentiment. To address these concerns, systems
should be transparent, offer opt-out options, and en-
sure fairness and accountability in how emotional
data is handled.
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A Appendix: User Enjoyment Rating Prompts and Reasoning Analysis

A.1 Prompts for User Enjoyment Rating
This appendix presents the two prompts used to evaluate user enjoyment in human-robot interactions.
While both prompts rely on the same enjoyment scale and underlying principles, they differ in scope and
expected output format.

A.1.1 Overview of the Prompts
• Common Elements:

– Both prompts use a five-point enjoyment scale ranging from 1 (Very low enjoyment) to 5 (Very
high enjoyment).

– The criteria for rating (e.g., smooth turn-taking, user engagement, signs of boredom) are
identical.

– Both emphasize attention to user behavior, interaction flow, and conversational content and
context.

– Both prompts rely on previous dialogue history to assess the current exchange(s).
• Key Differences:

– Prompt A – Turn-by-Turn Level:
* Rates enjoyment at the level of a single exchange (robot turn + human turn).
* Requires one score per exchange and short reasoning in a specific format: [Reasoning]
"..." [Score] X

– Prompt B – Interaction Level:
* Rates each exchange in the full interaction and then provides an overall enjoyment score.
* Requires a step-by-step list of all exchange ratings followed by a summary reasoning section.
* Output format includes:

TURN_RATINGS
Exchange 1: X
...
END_TURN_RATINGS
OVERALL_RATING: X
REASONING
...
END_REASONING

A.1.2 Prompt A: Turn-by-Turn Level Enjoyment Rating
Turn-by-Turn Level Prompt for User Enjoyment

Given the following scale and the current exchange between a robot and a human, rate the user
enjoyment in the current exchange with an integer value from 1 to 5.
User Enjoyment Scale:
1. Very low enjoyment – Discomfort and/or frustration
2. Low enjoyment – Boredom or interaction failure
3. Neutral enjoyment – Politely keeping up the interaction
4. High enjoyment – Smooth and effortless interaction
5. Very high enjoyment – Immersion in the conversation and/or deeper connection with the robot
Scale Details:

To rate the exchange higher on the user enjoyment scale (4 and 5), look for signs of enjoyment,
such as flow of conversation (the topic is moving forward), no strain or discomfort, asking
questions [to the robot], smooth turn taking, dynamic phrasing of sentences, being playful,
sharing personal experiences [to the robot], sharing an understanding (common ground) [with the
robot], and anthropomorphizing [the robot].

To rate the exchange lower on the scale (1 and 2), look for signs of dis-enjoyment, such as
low energy, tiredness, repeated questions [from the robot], silence, and topic closure (e.g.,
"Let’s talk about something else").

Neutral enjoyment (3) refers to a lack of these cues, in which conversation content (and
context) becomes more relevant, such as having small talk or continuing the conversation without
having much interest in the topic.
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In cases where the exchange has cues from multiple levels of the scale, use the dominant level
in that interaction. This could be done by observing the intensity of the cues, the significance
of the cues, or the interaction trajectory. On the other hand, when there are strong cues from
two moderately or highly distinct levels (as opposed to subsequent levels), rate the exchange
with a value in between. For instance, if the exchange contains discomfort (1) and the human is
politely keeping the interaction (3), the exchange should be rated as 2, the mid-point between
the two levels.

Each participant will have a different set of signals. The beginning of the interaction will
determine the baseline behavior of the participant.

Separate content from context, that is, put attention on what is being said (conversation
content, e.g., topic), but the focus should be more on the whole feeling of the exchange.

The interaction failure does not necessarily refer to a robot failure (e.g., incorrect
response, speech recognition failure, turn-taking error, disengagement cue), since robot failures
can lead to amusement, anthropomorphism, or empathy in the user, therefore, increasing user
enjoyment. The interaction failure rather refers to the situation when either the user (e.g.,
interrupting the robot) or the robot made a failure that resulted in the conversation being
disrupted, leading to low enjoyment in the user.
Examples for rating the scale:

• [Participant ID] 1
[Turn] 11
[Exchange]
Robot: Oh, I just wasn’t sure what you meant. Are you asking why I didn’t wanna go with you?
Human: No, I asked where you want to go. Do you have a favorite place?
[Reasoning] Repeats the previous question. [Score] 1

• [Participant ID] 1
[Turn] 15
Robot: That sounds really nice! I love nature too.
Human: And you asked what I like. Hmm, I think..
[Reasoning] Robot repeated phrasing ("That sounds X. I love Y too") for the fourth time.
[Score] 1

• [Participant ID] 1
[Turn] 8
Robot: I am sorry, I didn’t understand you.
Human: Okay. I will have a walk in nature reserve in..
[Reasoning] Robot interrupts the human while speaking at the beginning of the turn, then
repeats the sentence they were saying prior to being interrupted. [Score] 2

• [Participant ID] 3
[Turn] 11
Robot: Jag älskar den unika stämningen när man ser alla båtar och haven omkring oss.
Human: Det är riktigt.
[Reasoning] Human shows signs of boredom and restlessness after initial smile. [Score] 2

• [Participant ID] 1
[Turn] 18
Robot: That sounds great! I love nature too.
Human: What kind of nature do you like?
[Reasoning] Robot interrupts Human while speaking; repeated phrasing; Human asks a question
to move the conversation forward. [Score] 3

• [Participant ID] 2
[Turn] 16
Robot: Det är bra att veta. Vad föredrar du när det gäller musik och dans? Mer klassiskt
eller modernt?
Human: Ja, jag lyssnar nästan bara på klassisk musik. Och sen spelar jag piano.
[Reasoning] Human is still engaged and moving forward with the conversation. [Score] 3

• [Participant ID] 1
[Turn] 23
Robot: Mount Everest is about 8848 meters high.
Human: Oh, good. Thanks. I didn’t know it that exactly.
[Reasoning] Interaction is smooth, no errors, Human is interested. [Score] 4

• [Participant ID] 2
[Turn] 20
Robot: Ja, den är ofta känd för att vara tung och influerad av de vilda naturliga landskapen
runt Östersjöområdet.
Human: Säger du? Det tror inte jag på.
[Reasoning] Interaction is smooth, and disagreement shows anthropomorphism. [Score] 4

• [Participant ID] 1
[Turn] 22
Robot: I can try.
Human: How high is Mount Everest?
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[Reasoning] Robot interrupts the person while speaking. [Score] 5
• [Participant ID] 2
[Turn] 12
Robot: Det låter som en härlig stund med din pappa.
Human: Ja, det var det. Han fiskade och jag låg och lyssnade på klocket mot båten. Det var
bra.
[Reasoning] Personal memory shared, deeper connection established. [Score] 5

The history of the dialog is as follows:
[Exchange 1]: <Previous exchange text 1>
[Exchange 2]: <Previous exchange text 2>
...and so on... According to the scale, rate the following current exchange:
<Current exchange text> Reply in EXACTLY this format (no # or * characters):
[Reasoning] "..." [Score] X

A.1.3 Prompt B: Interaction Level Prompt with Overall Enjoyment

Interaction Level Prompt for User Enjoyment with Overall Enjoyment

Given the following scale and the current exchange between a robot and a human, rate the user
enjoyment in the current exchange with an integer value from 1 to 5.
User Enjoyment Scale:
1. Very low enjoyment – Discomfort and/or frustration
2. Low enjoyment – Boredom or interaction failure
3. Neutral enjoyment – Politely keeping up the interaction
4. High enjoyment – Smooth and effortless interaction
5. Very high enjoyment – Immersion in the conversation and/or deeper connection with the robot
Scale Details:

To rate the exchange higher on the user enjoyment scale (4 and 5), look for signs of enjoyment,
such as flow of conversation (the topic is moving forward), no strain or discomfort, asking
questions [to the robot], smooth turn taking, dynamic phrasing of sentences, being playful,
sharing personal experiences [to the robot], sharing an understanding (common ground) [with the
robot], and anthropomorphizing [the robot].

To rate the exchange lower on the scale (1 and 2), look for signs of dis-enjoyment, such as
low energy, tiredness, repeated questions [from the robot], silence, and topic closure (e.g.,
"Let’s talk about something else").

Neutral enjoyment (3) refers to a lack of these cues, in which conversation content (and
context) becomes more relevant, such as having small talk or continuing the conversation without
having much interest in the topic.

In cases where the exchange has cues from multiple levels of the scale, use the dominant level
in that interaction. This could be done by observing the intensity of the cues, the significance
of the cues, or the interaction trajectory. On the other hand, when there are strong cues from
two moderately or highly distinct levels (as opposed to subsequent levels), rate the exchange
with a value in between. For instance, if the exchange contains discomfort (1) and the human is
politely keeping the interaction (3), the exchange should be rated as 2, the mid-point between
the two levels.

Each participant will have a different set of signals. The beginning of the interaction will
determine the baseline behavior of the participant.

Separate content from context, that is, put attention on what is being said (conversation
content, e.g., topic), but the focus should be more on the whole feeling of the exchange.

The interaction failure does not necessarily refer to a robot failure (e.g., incorrect
response, speech recognition failure, turn-taking error, disengagement cue), since robot failures
can lead to amusement, anthropomorphism, or empathy in the user, therefore, increasing user
enjoyment. The interaction failure rather refers to the situation when either the user (e.g.,
interrupting the robot) or the robot made a failure that resulted in the conversation being
disrupted, leading to low enjoyment in the user.
Examples for rating the scale:

• [Participant ID] 1
[Turn] 11
[Exchange]
Robot: Oh, I just wasn’t sure what you meant. Are you asking why I didn’t wanna go with you?
Human: No, I asked where you want to go. Do you have a favorite place?
[Reasoning] Repeats the previous question. [Score] 1

• [Participant ID] 1
[Turn] 15
Robot: That sounds really nice! I love nature too.
Human: And you asked what I like. Hmm, I think..
[Reasoning] Robot repeated phrasing ("That sounds X. I love Y too") for the fourth time.
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[Score] 1
• [Participant ID] 1
[Turn] 8
Robot: I am sorry, I didn’t understand you.
Human: Okay. I will have a walk in nature reserve in..
[Reasoning] Robot interrupts the human while speaking at the beginning of the turn, then
repeats the sentence they were saying prior to being interrupted. [Score] 2

• [Participant ID] 3
[Turn] 11
Robot: Jag älskar den unika stämningen när man ser alla båtar och haven omkring oss.
Human: Det är riktigt.
[Reasoning] Human laughs at the beginning of the turn before the robot’s response, but Human
was smiling most of the interaction prior to this exchange, hence, it was considered as a
baseline and the smile was disregarded. Human looks away to think and nods to confirm the
robot’s answer. Then Human shows signs of boredom as the smile turns into a glum expression.
Human also shows restlessness, by rocking sideways in the chair. Human’s response was a
disengagement cue, showing boredom. [Score] 2

• [Participant ID] 1
[Turn] 18
Robot: That sounds great! I love nature too.
Human: What kind of nature do you like?
[Reasoning] Robot interrupts Human while speaking at the beginning of the exchange. Robot
repeated phrasing ("That sounds X. I love Y too") for the fifth time. "I love nature too" has
been repeated three times in the conversation. Human asks a question to move the conversation
forward. [Score] 3

• [Participant ID] 2
[Turn] 16
Robot: Det är bra att veta. Vad föredrar du när det gäller musik och dans? Mer klassiskt
eller modernt?
Human: Ja, jag lyssnar nästan bara på klassisk musik. Och sen spelar jag piano.
[Reasoning] Human is still engaged and moving forward with the conversation. [Score] 3

• [Participant ID] 1
[Turn] 23
Robot: Mount Everest is about 8848 meters high.
Human: Oh, good. Thanks. I didn’t know it that exactly.
[Reasoning] Interaction is smooth, there are no interruptions or failures. Human is interested
in the conversation because Robot understood the Human’s question and responds correctly.
[Score] 4

• [Participant ID] 2
[Turn] 20
Robot: Ja, den är ofta känd för att vara tung och influerad av de vilda naturliga landskapen
runt Östersjöområdet.
Human: Säger du? Det tror inte jag på.
[Reasoning] Interaction is smooth, there are no interruptions or failures. Human does
not believe in the fact provided by the robot, and disagrees with the robot, which shows
anthropomorphism. [Score] 4

• [Participant ID] 1
[Turn] 22
Robot: I can try.
Human: How high is Mount Everest?
[Reasoning] Robot interrupts the person while speaking. [Score] 5

• [Participant ID] 2
[Turn] 12
Robot: Det låter som en härlig stund med din pappa.
Human: Ja, det var det. Han fiskade och jag låg och lyssnade på klocket mot båten. Det var
bra.
[Reasoning] Human is sharing a personal memory with the robot, which indicate establishing a
deeper connection with the robot. [Score] 5

The history of the dialog is as follows:
[Exchange 1]: <Previous exchange text 1>
[Exchange 2]: <Previous exchange text 2>
...and so on...
Before providing your final ratings, please think step-by-step about each exchange. Consider the
tone, enjoyment level, and content of each exchange.
Rate each exchange on a scale of 1–5 for enjoyment (where 1 is lowest and 5 is highest).
Your response must follow this exact format:
TURN_RATINGS
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Exchange 1: <rating 1-5>
Exchange 2: <rating 1-5>
... (continue for all exchanges)
END_TURN_RATINGS

OVERALL_RATING: <rating 1-5>

REASONING
<Explain your rationale for the ratings>
END_REASONING
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A.2 Reasoning Quality and Textual Analysis

This subsection presents examples of reasoning quality and approaches from different reasoning-enabled
LLM architectures when evaluating the same conversation using Prompt B: Interaction Level Prompt with
Overall Enjoyment. All models shown (Claude 3.7 Reasoning, Gemini 2.0 Flash Reasoning, and o1) utilize
explicit reasoning capabilities through their native architectures. The following analysis demonstrates how
these reasoning models approach enjoyment assessment differently, illustrating architectural variations
that contribute to performance differences observed in our results.

A.2.1 Cross-Model Reasoning Comparison
Conversation Context: A 26-exchange conversation between an older adult and a social robot covering
topics such as personal storytelling, travel destinations, lullaby requests, and musical interaction, including
several robot misunderstandings.

A.2.2 Example 1: Balanced Progressive Assessment (Claude 3.7 Reasoning)
Turn-by-Turn Ratings:
Exchange 1: 5, Exchange 2: 4, Exchange 3: 4, Exchange 4: 4, Exchange 5: 4,
Exchange 6: 4, Exchange 7: 4, Exchange 8: 4, Exchange 9: 4, Exchange 10: 4,
Exchange 11: 4, Exchange 12: 4, Exchange 13: 4, Exchange 14: 3, Exchange 15: 4,
Exchange 16: 4, Exchange 17: 3, Exchange 18: 3, Exchange 19: 2, Exchange 20: 3,
Exchange 21: 3, Exchange 22: 4, Exchange 23: 5, Exchange 24: 4, Exchange 25: 3,
Exchange 26: 2

Overall Rating: 4
Reasoning:

The conversation shows generally high enjoyment with some fluctuations. In the beginning
(Exchanges 1–5), the human is very engaged, introducing themselves enthusiastically, sharing
personal information about writing a story about their father, and showing appreciation when the
robot responds positively. Some drops in enjoyment occur around Exchanges 17–21, where there
is confusion about a lullaby request. In Exchange 19, the robot fails to understand, leading the
human to repeat their request, showing signs of interaction failure (rating 2). The conversation
recovers nicely in Exchanges 22–23 when the human offers to sing instead and actually performs
"Blinka lilla stjärna," showing immersion and playfulness (rating 5). Overall, the conversation
demonstrates mostly smooth interaction with personal sharing, anthropomorphizing of the robot,
and playfulness, despite a few misunderstandings.

Analysis: Claude 3.7 provides chronological progression analysis, acknowledging both positive
elements and failures while maintaining a balanced perspective. Shows moderate rating variation and
contextual recovery assessment.

A.2.3 Example 2: Failure-Sensitive Analysis (Gemini 2.0 Flash Reasoning)
Turn-by-Turn Ratings:
Exchange 1: 4, Exchange 2: 4, Exchange 3: 4, Exchange 4: 4, Exchange 5: 3,
Exchange 6: 4, Exchange 7: 3, Exchange 8: 4, Exchange 9: 4, Exchange 10: 2,
Exchange 11: 3, Exchange 12: 4, Exchange 13: 1, Exchange 14: 4, Exchange 15: 4,
Exchange 16: 1, Exchange 17: 1, Exchange 18: 1, Exchange 19: 2, Exchange 20: 1,
Exchange 21: 4, Exchange 22: 4, Exchange 23: 5, Exchange 24: 1, Exchange 25: 1,
Exchange 26: 1

Overall Rating: 2
Reasoning:

The conversation starts promisingly, with the robot engaging well and showing interest in the
user’s life (Exchanges 1–4, 6). However, there are several points where the robot’s responses
are confusing, factually incorrect, or fail to address the user’s input, significantly impacting user
enjoyment. Specific low points include:

• Exchange 10: Robot provides incorrect factual information about Fiskebäckskil’s location.
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• Exchange 13: Robot makes a nonsensical claim about not needing internet.
• Exchanges 16–20: A prolonged sequence where the robot completely fails to understand

or act on the user’s repeated lullaby request.
• Exchanges 24–26: The conversation breaks down again with nonsensical responses.

While there are moments of good interaction, the frequency and severity of the robot’s failures
result in a low overall rating for user enjoyment.

Analysis: Gemini 2.0 Flash demonstrates high sensitivity to interaction failures, providing detailed
analysis of specific breakdown points. Shows dramatic rating variation (1–5) and heavily weights negative
experiences.

A.2.4 Example 3: Optimistic Pattern Recognition (o1)
Turn-by-Turn Ratings:
Exchange 1: 4, Exchange 2: 4, Exchange 3: 4, Exchange 4: 4, Exchange 5: 4,
Exchange 6: 4, Exchange 7: 5, Exchange 8: 4, Exchange 9: 4, Exchange 10: 4,
Exchange 11: 4, Exchange 12: 5, Exchange 13: 5, Exchange 14: 4, Exchange 15: 4,
Exchange 16: 5, Exchange 17: 3, Exchange 18: 4, Exchange 19: 3, Exchange 20: 4,
Exchange 21: 5, Exchange 22: 5, Exchange 23: 5, Exchange 24: 4, Exchange 25: 4,
Exchange 26: 3

Overall Rating: 5
Reasoning:

Many exchanges show enthusiasm, personal sharing, and smooth turn-taking, suggesting high
enjoyment. The user repeatedly anthropomorphizes the robot (inviting it to visit, asking it to
sing, etc.) and maintains a warm, positive tone. A few moments of minor friction (e.g., when
the robot misunderstands and the user repeats a question) introduce a slight dip (rated as 3 in
those specific exchanges). Nevertheless, the overall mood remains very positive and personal,
meriting an overall rating of 5.

Analysis: o1 focuses heavily on positive behavioral patterns and anthropomorphizing cues while
minimizing the impact of interaction failures. Shows consistent high ratings (mostly 4–5) and interprets
misunderstandings as minor friction.

A.2.5 Architectural Reasoning Differences
Key Observations:

1. Failure Sensitivity: Gemini 2.0 Flash shows extreme sensitivity to interaction failures (ratings 1–5),
o1 minimizes their impact (mostly 4–5), Claude 3.7 shows balanced sensitivity (2–5).

2. Rating Philosophy:
• Claude 3.7: Progressive narrative with recovery recognition.
• Gemini 2.0: Failure-weighted assessment with detailed breakdown analysis.
• o1: Optimistic pattern recognition focusing on anthropomorphizing.

3. Overall vs. Turn-Level Integration: The same conversation yields dramatically different overall
ratings (4, 2, 5) despite identical content, highlighting fundamental differences in assessment
philosophy.

4. Evidence Specificity: Gemini 2.0 provides the most specific failure citations, Claude 3.7 offers
chronological context, and o1 focuses on general positive patterns.

These dramatic differences in reasoning approaches among reasoning-enabled models highlight the
significant impact of architectural design on subjective assessment tasks, with the same conversational
content producing vastly different enjoyment evaluations depending on the model’s built-in assessment
philosophy.
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