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Abstract

Accurately estimating users’ emotional states
in real time is crucial for enabling dialogue sys-
tems to respond adaptively. While existing ap-
proaches primarily rely on verbal information,
such as text and speech, these modalities are
often unavailable in non-speaking situations.
In such cases, non-verbal information, particu-
larly physiological signals, becomes essential
for understanding users’ emotional states. In
this study, we aimed to develop a model for real-
time recognition of users’ binary emotional va-
lence (high-valence vs. low-valence) during
conversations. Specifically, we utilized an ex-
isting Japanese multimodal dialogue dataset,
which includes various physiological signals,
namely electrodermal activity (EDA), blood
volume pulse (BVP), photoplethysmography
(PPG), and pupil diameter, along with speech
and textual data. We classify the emotional va-
lence of every 15-second segment of dialogue
interaction by integrating such multimodal in-
puts. To this end, time-series embeddings of
physiological signals are extracted using a self-
supervised encoder, while speech and textual
features are obtained from pre-trained Japanese
HuBERT and BERT models, respectively. The
modality-specific embeddings are integrated
using a feature fusion mechanism for emo-
tional valence recognition. Experimental re-
sults show that while each modality individ-
ually contributes to emotion recognition, the
inclusion of physiological signals leads to a no-
table performance improvement, particularly
in non-speaking or minimally verbal situations.
These findings underscore the importance of
physiological information for enhancing real-
time valence recognition in dialogue systems,
especially when verbal information is limited.

1 Introduction

Understanding and responding to users’ emotional
states is a fundamental capability for user-adaptive
dialogue systems. Such systems must be able to
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detect and adapt to users’ emotional states in real
time to foster natural and engaging interactions.
While prior work has made considerable progress
in emotion recognition by leveraging verbal infor-
mation (Majumder et al., 2019; Ghosal et al., 2019),
notably text and speech, these approaches often fall
short in non-speaking or minimally verbal contexts,
which are common in real-world interactions. In
these cases, relying solely on verbal information
can hinder the system’s ability to maintain emo-
tional awareness and responsiveness.

To address this limitation, non-verbal modali-
ties, especially physiological signals, offer valuable
cues about users’ internal states. Physiological sig-
nals, such as EDA and BVP, have been shown to re-
flect changes in emotional arousal and valence (Ko-
matani and Okada, 2021; Saffaryazdi et al., 2022;
Singh et al., 2024; Jiang et al., 2024). These signals
are continuous, language-independent, and inher-
ently real-time, making them suitable for supple-
menting verbal inputs during emotionally relevant
but verbally sparse moments in dialogue.

In this study, we tackle binary emotional valence
recognition (high-valence vs. low-valence) in con-
versational settings by integrating physiological
signals with speech and text. As a preliminary step
toward developing real-time emotion recognition
systems, we develop a model to classify the emo-
tional valence of each 15-second dialogue segment
using a Japanese multimodal dialogue dataset that
includes multiple physiological signals alongside
speech recordings and textual transcripts. To this
end, we adopt a multimodal recognition framework
that combines (1) time-series embeddings of phys-
iological signals extracted via a self-supervised
encoder, (2) speech features from a pre-trained
Japanese HUBERT model, and (3) text embeddings
from a pre-trained Japanese BERT model. The
modality-specific representations are then fused
via a feature fusion mechanism and used for down-
stream classification.
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Our findings demonstrate the effectiveness of in-
tegrating physiological signals with verbal informa-
tion for emotional valence recognition and provide
an assessment of the individual contributions of
EDA, BVP, PPG, and pupil diameter. The results
underscore the potential of physiological signals
to enhance the emotional intelligence of dialogue
systems, enabling robust performance even during
verbally limited or silent phases of interaction.

2 Related Work

Recognizing the emotional states of speakers dur-
ing dialogue is essential for achieving smooth and
adaptive communication. Toward this goal, a wide
range of approaches leveraging textual, speech, and
facial expression information have been proposed
(Shi and Huang, 2023; Ma et al., 2024). Recent
studies have explored multimodal fusion to im-
prove emotion recognition performance. For exam-
ple, Hazarika et al. (2020) proposed MISA, a frame-
work that integrates text, audio, and visual infor-
mation via contextual inter-modal attention. Zadeh
et al. (2018) introduced the CMU-MOSEI dataset
along with the Dynamic Fusion Graph for modeling
cross-modal interactions. Majumder et al. (2019)
developed DialogueRNN, which tracks speaker
states and conversational context using multimodal
features. However, most of these approaches pri-
marily rely on verbal and visual modalities.

Meanwhile, physiological signals, particularly
cardiac-related signals such as electrocardiograms
(ECG), have emerged as promising modalities for
emotion recognition. Traditional methods extract
handcrafted features such as heart rate variability
(HRV) and apply classifiers such as SVMs or ran-
dom forests. More recently, the dynamic nature of
physiological data has motivated the application of
time-series modeling techniques, including LSTM-
based recurrent networks and Transformer architec-
tures, to capture the temporal dependencies and im-
prove prediction accuracy (Katada et al., 2022). In
addition, self-supervised learning methods, such as
Ts2Vec (Yue et al., 2022) and contrastive learning
frameworks (Wu et al., 2023), have been proposed
to learn rich physiological representations without
extensive labeled data.

Several studies have explored the integration of
physiological signals with other modalities to im-
prove emotion recognition performance in human-
computer interactions. For instance, Wang et al.
(2022) proposed a multimodal framework combin-

ing EEG and speech signals, demonstrating that
EEG can significantly enhance speech-based emo-
tion classification. Similarly, Katada et al. (2020)
examined EDA and visual features to assess users’
binary sentiment states in dialogue, achieving an
accuracy of 63.2% and emphasizing the improve-
ments gained through physiological signal integra-
tion.

Despite these advancements, many prior studies
continue to rely heavily on verbal information and
often assume access to complete utterances or en-
tire conversational segments. This overlooks the
challenges of real-time emotion recognition during
ongoing interactions, especially in non-speaking or
minimally verbal situations.

To address this limitation, we propose a multi-
modal recognition framework that integrates phys-
iological signals, speech, and textual information.
By predicting emotional valence over short, fixed
time intervals, our approach would enable robust
emotion recognition, even in conversational envi-
ronments with limited linguistic information.

3 Dataset

To investigate multimodal recognition of emotional
valence, we used an existing Japanese human-
human multimodal dialogue dataset that we pre-
viously created (Jiang et al., 2024), which con-
tains multimodal information recorded by hetero-
geneous devices. Table 1 provides an overview of
the dataset. The dataset consists of dyadic interac-
tions involving 40 Japanese participants, grouped
into 20 pairs, each engaging in dialogues across
three topics: “Chit-chat,” “Narrative,” and “Dis-
cussion,” yielding a total of 60 dialogue sessions.
Each session lasts approximately 10 minutes and
records a range of multimodal data, including
speech, video, physiological signals, and motion
information. Manually annotated transcriptions of
the spoken conversations are also provided. The
emotional content of the dialogues was annotated
by the interlocutors themselves at each moment in
the dialogue, using continuous ratings from 0 to 10
(higher values indicate higher emotional valence),
collected at a sampling rate of 4 Hz.

In this study, we focus on leveraging physiolog-
ical signals and verbal information for emotional
valence recognition. Among the available modali-
ties in the dataset (text, speech, video, physiologi-
cal signals, and motion information), we selected
physiological data (EDA, BVP, PPG, and pupil
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Description [

Details

Overview

Japanese Multimodal dialogues between two human interlocutors

Participants

40 individuals forming 20 dyadic groups

Dialogue Duration

10 minutes per dialogue

Number of Dialogues

60 sessions

Annotations

Subjective emotional valence ratings of interlocutor at 4 Hz
(Continuous scale of 0 to 10 represents low to high emotional valence)

Table 1: Overview of Japanese multimodal dialogue dataset used in this study.

diameter), speech data, and text data for training
the recognition models. A detailed description of
the selected data is provided in Table 2. The sub-
jective emotional valence annotations included in
the dataset were used as the target labels for the
recognition task (see Sec. 3.2 for details).

3.1 Data Preprocessing

Among the data collected from the 40 participants,
one participant’s pupil data was missing. Therefore,
we excluded all multimodal data associated with
this participant. To enable emotional valence pre-
diction at any point during the conversation with-
out being restricted to utterance boundaries, we
segmented the physiological, speech, and text data,
along with the corresponding subjective emotional
annotations of the remaining 39 participants, into
15-second intervals based on timestamps (Fig. 1).
The 15-second window was selected to strike a
balance between capturing local emotional fluctua-
tions and maintaining the stability of multimodal
information, particularly physiological signals. It is
short enough to reflect momentary changes in emo-
tional state while providing sufficient data within
each segment for reliable prediction. Additionally,
we removed segments with missing pupil diameter
data due to eye blinks, which accounted for less
than 1.5% of the entire dataset.

As a result, we obtained a total of 4,831 mul-
timodal samples, each comprising 15-second seg-
ments of physiological, speech, text data, and sub-
ject emotional valence. In the following sections,
we describe the detailed preprocessing procedures
for each modality.

3.1.1 Physiological Signals

Following the methodology described in (Jiang
et al., 2024), we used the NeuroKit2 toolbox! to
preprocess and extract features from the EDA, BVP,
and PPG signals. Preprocessing involved noise re-
duction and filtering, after which relevant features
were extracted for each signal.

"https://neuropsychology.github.io/NeuroKit/

The EDA signals, acquired at a low sampling
rate of 4 Hz using EmbracePlus wrist-worn sen-
sors? (hereafter, EmbracePlus), underwent no ad-
ditional filtering. Two key features were extracted:
the skin conductance level (SCL), representing the
tonic component and reflecting the general activity
of sweat glands, and the skin conductance response
(SCR), representing the phasic component and indi-
cating rapid changes in skin conductance triggered
by specific stimuli, useful for assessing short-term
physiological reactions.

BVP was recorded at 64 Hz using EmbracePlus,
while PPG was captured at 120 Hz using Shimmer3
GSR+ ear-mounted sensors’. Both BVP and PPG
signals were processed with a bandpass filter to
minimize noise and smooth the signals. Feature ex-
traction involved calculating the Heart Rate (beats
per minute), Peak (the maximum amplitude of the
BVP or PPG waveform, representing heartbeat in-
tensity), and RRI (R-R interval, the variability be-
tween successive heartbeats). These features were
obtained by applying a peak detection algorithm to
the time-series data.

Pupil diameter measurements were recorded at
13-26 Hz for both eyes using Pupil Core eye track-
ers*. Each measurement was accompanied by a
confidence score indicating its quality. We consid-
ered data points with a confidence score below 0.6
to be unreliable and treated them as missing values.
To standardize the data for subsequent processing,
all pupil diameter measurements were resampled
to a uniform rate of 4 Hz.

3.1.2 Speech

Although the speech of each speaker was recorded
separately using unidirectional microphones (DPA
4088 microphones’), the audio recordings still con-
tained background speech from the other interlocu-

2https://www.empatica.com/en—int/embraceplus/

3https://shimmersensing.com/product/
shimmer3-gsr-unit/

4https://pupil—labs.com/products/core

5https://www.hibino—intersound.co.jp/dpa_
microphones/5394.html
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[ Modality | Data Type

Device and Description

Physiology | EDA waveform (4 Hz) Electrodermal activity recorded using EmbracePlus wrist-worn sensors
BVP waveform (64 Hz) Blood Volume Pulse recorded using EmbracePlus wrist-worn sensors
PPG waveform (120 Hz) Photoplethysmography recorded using Shimmer3 GSR+ sensors
Pupil diameter (13-26 Hz) | Pupil size of both eyes recorded using Pupil Core eye trackers
Speech Monologue audio Speech recordings of individual interlocutors captured with DPA 4088 mics
Text Text Transcriptions Manual annotated textual transcriptions of spoken conversations

Table 2: Overview of multimodal data used in this study, including physiological, speech, and textual modalities,
along with their respective recording devices and specifications.

Multimodal Recognition Framework Sec. 4

Physiological
Inputs

Speech Inputs

Physiological
Representation

Speech

Representation

e . " ——>  Classification
Representation Fusion l
Text Inputs _ o . High/Low-Valence
Representation
time,
Physiological
Signals
Speech
Text Utterance Utterance

Emotional
Valence

Data Preprocessing Sec. 3.1

Figure 1: Overview of multimodal recognition framework of emotional valence. Physiological signals, speech,
and transcription data are segmented into 15-second intervals during preprocessing (Sec. 3.1). Each modality is
independently processed to extract modality-specific representations (Sec. 4.1), which are then fused and input into
classification model to predict high or low emotional valence (Sec. 4.2).

tor. Therefore, to suppress the unintended speaker’s
voice, we applied a low-pass filter with a cutoff fre-
quency of 3,000 Hz to attenuate noise using the
pydub® library in Python.

3.1.3 Text

To obtain finer-grained temporal information, we
generated word-level timestamps from the origi-
nal utterance-level transcriptions using a forced
alignment approach, following the methodology
of Pratap et al. (2024). Specifically, we used the
Japanese wav2vec2 model’ to extract high-quality
token-level acoustic representations from the au-
dio recordings. By aligning these acoustic fea-
tures with the utterance-level transcriptions, we pre-
dicted the timing boundaries of each word, yield-
ing precise word-level timestamps. On the basis of
these timestamps, we extracted the corresponding

®https://pydub.com/
7https://huggingface.co/reazon—research/
japanese-wav2vec2-large-rs35kh

text content by collecting all words spoken within
each 15-second interval. Tokens that spanned the
segment boundary were included in the 15-second
segment.

3.2 Emotional Valence Labels

Previous studies have indicated an imbalance in the
distribution of subjective evaluation annotations,
with a predominance of high-valence data (Jiang
et al., 2024). To address this bias, ensure stable
model learning, and facilitate balanced classifica-
tion, we formulated the emotion recognition task as
a binary classification problem, distinguishing be-
tween “high-valence” and “low-valence” emotional
states.

To achieve a more balanced distribution of emo-
tional labels, we evaluated classification thresholds
of 5 and 6. Specifically, the average subjective
valence score was calculated for each 15-second
segment; segments with an average score higher
than the threshold were labeled as “high-valence,”
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while those with an average score equal to or be-
low the threshold were labeled as “low-valence.”
This resulted in a class distribution of 3,981 high-
valence instances and 850 low-valence instances
(4.7 : 1) for threshold 5, and 3,170 high-valence
instances and 1,661 low-valence instances (1.9 : 1)
for threshold 6. Since threshold 5 produced highly
imbalanced distributions, we selected threshold 6
as the cutoff point.

4 Multimodal Recognition Framework

To recognize emotional valence from both verbal
and non-verbal cues, we developed a multimodal
recognition framework that integrates text, speech,
and physiological data, as illustrated in Fig. 1.

4.1 Multimodal Feature Extraction

Physiological, speech, and text representations
were extracted from the 15-second segments pro-
cessed in Section 3.1. The following details the
procedures used to extract modality-specific fea-
ture representations.

4.1.1 Physiological Representations

To reduce the influence of individual differences
between different interlocutors on the physiological
signals, min-max normalization was applied to all
physiological data on a speaker-by-speaker basis,
scaling the physiological values of each speaker to
a consistent range (0 to 1).

For each physiological signal (EDA, BVP, PPG,
and pupil diameter), the time-series data were con-
structed by stacking the extracted features along
the feature dimension. Specifically, each sample is
represented as:

EDA & R"sample X Timestamps X 3 : ( 1)
BVP ¢ R"sample X Timestamps X 47 ?)
PPG & R"sample X Mimestamps ><4’ 3)
Pupil € IR sample * Ttimestamps X 2 : @)

where ngmple denotes the number of 15-second
segments, and Ngmesamps = 15 seconds X
sampling rate represents the number of timestamps
for each signal. The feature dimensions correspond
to:

EDA: Raw EDA signal, SCL, SCR;
BVP: Cleaned BVP signal, Heart Rate, Peak, RRI;
PPG: Cleaned PPG signal, Heart Rate, Peak, RRI;

Pupil: Pupil diameter of the right and left eyes.

In this study, we used Ts2Vec (Yue et al., 2022),
a general-purpose framework for time-series rep-
resentation learning, as the physiological encoder.
Ts2Vec leverages hierarchical contrastive learning
over extended contextual views to capture and vec-
torize multi-scale temporal dependencies. Each
constructed time-series input was fed into Ts2Vec
to obtain a fixed-dimensional embedded representa-
tion in R™wmpeX? where d denotes the embedding
dimensionality for each physiological signal.

We trained the TS2Vec model on the training
data using three hyperparameters: a batch size of
4, an embedding dimensionality of 200, and 15
training epochs.

4.1.2 Speech Representations

We utilized a pre-trained HuBERT model op-
timized for Japanese (hereafter, Japanese Hu-
BERT) (Sawada et al., 2024) to obtain the speech
representations. Japanese HuBERT was pre-trained
on a Japanese speech corpus, ReazonSpeech (Yin
et al., 2023), by using the self-supervised speech
representation learning approach of HuBERT (Hsu
et al., 2021). To align with the input requirements
of Japanese HuBERT, we downsampled each 15-
second audio clip from 44.1 kHz to 16 kHz. The
model generated frame-level speech representa-
tions for each 50-ms segment of the speech wave-
form, resulting in embeddings with a shape of
[R7sample X Mrame X\ here Nsample denotes the num-
ber of 15-second speech clips, nfame the number
of frames per clip, and d = 768 the dimensionality
of each frame-level embedding.

For subsequent representation fusion, we ap-
plied mean pooling over the frame dimension,

yielding fixed-size speech representations of shape
TR "sample X d.

4.1.3 Text Representations

We utilized a pre-trained Japanese BERT model®
to extract text representations. Each 15-second
text segment contained a varying number of words
depending on the interlocutors’ speaking duration.
For each segment, the initial text representations
were obtained in the form of Rk X2 \where noken
refers to the number of tokens in the text sequence,
and d = 768 represents the dimensionality of each
token embedding.

To generate a fixed-size text representation for
each segment, we applied mean pooling across

8https://github.com/cl-tohoku/bert-japanese
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the token dimension, resulting in text representa-
tions of shape RMsample X \where Nsample indicates
the number of text segments.

4.2 Multimodal Representation Fusion

To effectively integrate information from multiple
modalities, we used a feature fusion mechanism
that assigns learnable weights to modality-specific
representations. This enables the model to focus on
more informative modalities while down-weighting
less relevant ones.

Let hy, ha, ..., hys denote the input representa-
tions from M modalities, each projected to a shared
dimensional space R¢ via modality-specific linear
layers. The fusion module learns a set of weights
w1, Wa, . .., wys through a softmax operation ap-
plied to trainable parameters.

The final fused representation o is computed as
a weighted sum of the modality-specific represen-

tations:
M
0= wyhp )
m=1

where w,,, represents the normalized weight for
modality m.

4.3 Classification

The fused multimodal representation is then fed
into a Multi-Layer Perceptron (MLP) classifier to
predict the emotional valence (i.e., high-valence or
low-valence). The MLP consists of a single hidden
layer with 128 units, followed by a ReLU activation
and a final output layer for binary classification.
The model was trained using the Adam optimizer
with a learning rate of 0.001 for 20 epochs. The
batch size was set to the full sample size in each
training.

To address class imbalance in the training set, we
oversampled the minority class by using the Adap-
tive Synthetic (ADASYN) algorithm (He et al.,
2008) before training.

4.4 Evaluation Procedure

We applied the 5-fold cross-validation with an
interlocutor-pair open setting. Specifically, the
dataset was partitioned such that in each fold, the
samples from certain interlocutor pairs were exclu-
sively assigned to the test set, while the samples
from the remaining interlocutor pairs were used
for training. The interlocutor pairs were randomly
assigned to each fold using a fixed random seed
of 42. This procedure ensured that the test data of

Test Fold | High Low Total
Fold 1 579 383 962
Fold 2 558 452 1,010
Fold 3 591 309 900
Fold 4 804 180 984
Fold 5 638 337 975

All 3,170 1,661 4,831

Table 3: Sample counts for each test fold, including
number of high-valence and low-valence samples across
test folds. Total number of segments is shown per fold,
as well as aggregated totals across all folds.

an interlocutor pair was completely excluded from
the training data, thereby preventing any potential
data contamination. The number of high-valence,
low-valence, and total samples across 5 test folds
is summarized in Table 3.

For the imbalanced classification task, we used
Balanced accuracy (B-Acc) and Macro F1 score
(M-F1) evaluation metrics, which are calculated as
follows:

1
B-Ace = _ (TPR + TNR) (6)
1
M-F1 = 5 (Flhigh + Fllow) (N

where TPR, TNR denote the True Positive Rate
and True Negative Rate, and F'lyign, F'1jow denote
the F'1 scores for high-valence and low-valence
classes. The reported performance was obtained
by averaging the B-Acc and M-F1 across the five
folds.

5 Experiment

To evaluate the effectiveness of different input
modalities in the recognition of emotional valence,
we conducted two rounds of classification tasks:

Unimodal and multimodal recognition: We as-
sessed both unimodal and multimodal models. We
conducted unimodal experiments individually for
the physiological, speech, and text modalities. Sub-
sequently, we evaluated the performance of the
multimodal models by combining different pairs of
modalities (Text + Speech, Text + Physio, Speech +
Physio), and a model incorporating all three modal-
ities (Text + Speech + Physio). For the physiologi-
cal modality, all physiological signals (EDA, BVP,
PPG, and pupil diameter) were used as input.

Ablation study on physiological signal contribu-
tion: We conducted an ablation study to further
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analyze the contribution of each physiological sig-
nal. This was done by taking the best-performing
physiological-signal-including model and remov-
ing one type of physiological signal at a time from
the input.

Additionally, to examine the performance of
each model across different speaking duration per-
centages, we further investigated how recognition
performance varies with these percentages and con-
ducted a case study.

5.1 Performance of Unimodal and
Multimodal Recognition

Table 4 presents the B-Acc and M-F1 for the uni-
modal and multimodal recognition models. Among
the unimodal models, the Speech model achieved
the best performance, with a B-Acc of 0.597 and
an M-F1 of 0.578. For the multimodal models,
all combinations of two or three modalities out-
performed their respective unimodal counterparts,
demonstrating the effectiveness of the multimodal
recognition framework. In particular, the Speech
+ Physio model achieved the highest recognition
performance, with a B-Acc of 0.626 and an M-F1
of 0.615. The All (Text + Speech + Physio) model
achieved the second-best performance, with a B-
Acc of 0.615 and an M-F1 of 0.606, suggesting
that while integrating additional modalities can be
beneficial, the optimal fusion may depend on the
complementarity of specific modalities.

To evaluate the effectiveness of different models,
we conducted McNemar’s statistical tests (Gillick
and Cox, 1989), comparing the best-performing
model (Speech + Physio) against each of the other
six models: Text, Speech, Physio, Text + Speech,
Text + Physio, and All. Holm’s correction was
applied to control for multiple comparisons. The
Speech + Physio model significantly outperformed
all unimodal models (Text, Speech, and Physio
model) as well as the Text + Speech and the Text +
Physio models (p < 0.01).

5.2 Results of Physiological Signal Ablation
Study

We conducted an ablation study by removing one
physiological signal input (EDA, BVP, PPG, and
pupil diameter) at a time from the best-performing
Speech + Physio model. The results are summa-
rized in Table 5. When EDA was removed, the
performance dropped most significantly, with de-
creases of 0.013 in B-Acc and 0.016 in M-F1, in-

Modality B-Acc M-F1 | Sig.
Uni Text 0.542  0.524 *E
Speech 0.597  0.578 o
Physio 0.552  0.529 **
Multi Text + Speech 0.596  0.584 ok
Text + Physio 0.559  0.548 ok
Speech + Physio | 0.626  0.615
All 0.615  0.606

Table 4: 5-fold cross-validation results for unimodal
and multimodal emotion recognition models. B-Acc:
Balanced Accuracy; M-F1: Macro F1 Score. Best and
second-best performances are highlighted in bold and
underlined, respectively. Models marked with ** exhibit
statistically significant performance difference (p <
0.01) from best-performing model, as determined by
McNemar’s test with Holm correction.

dicating that EDA contributes more substantially
to emotional valence recognition compared with
the other physiological signals. Removing BVP
or PPG signals led to moderate declines in both
metrics. Interestingly, excluding pupil diameter
slightly improved B-Acc to 0.627, although it
caused a small decrease in M-F1 (-0.001). This
suggests that pupil diameter may not contribute
as effectively to recognition performance as the
other physiological features in the context of our
multimodal recognition framework.

5.3 Performance Across Speaking Duration
Percentages

To examine how the proportion of spoken content
influences recognition performance, we grouped all
15-second samples according to their Speaking Du-
ration Percentage (%), which was computed using
the following formula:

Speaking Time
Speaking Duration Percentage — opeding Tme x 100

15s
3

We then evaluated the M-F1 of four models:
Speech + Physio, Speech, Text, and Physio, across
these percentage intervals. The results are pre-
sented in Figure 2.

Across all speaking duration percentages, the
Speech + Physio model consistently achieved the
highest performance, outperforming all unimodal
models. Notably, its performance peaked within
the 40-70% speaking duration range, with the
Speech-only model ranking second, highlighting
the substantial contribution of spoken content to
recognition of the emotional valence.

A significant proportion of samples fell within
the 0-20% speaking duration range. Recognition
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Modality B-Acc M-F1 | AAcc AF1
Speech + Physio (Full) | 0.626 0.615 - -
w/o EDA 0.613 0.599 | -0.013 -0.016
w/o BVP 0.616 0.605 | -0.010 -0.010
w/o PPG 0.615 0.603 | -0.011 -0.012
w/o Pupil Diameter 0.627 0.614 | +0.001 -0.001

Table 5: 5-fold cross-validation results for ablation study of individual physiological signals. B-Acc: Balanced
Accuracy; M-F1: Macro F1 Score. AAcc and AF1 represent performance decrease in B-Acc and M-F1 compared
with full Speech + Physio model. Largest performance drop is highlighted in bold.

performance in this range was generally weaker
across all models. Among the unimodal models,
the Physio model outperformed both the Speech
and Text models when the speaking duration was
below 20%. This suggests that physiological
signals are especially valuable in low-speech or
non-speech segments, serving as a complemen-
tary modality to verbal information and enhancing
recognition in scenarios where speech is sparse or
absent.

Sample Counts across Speaking Duration Percentages

o
=}
S

Number of Samples
N IS
=1 S
1S3 S

o
o

20 40 60 80 100
Speaking Duration Percentage (15 s)

Macro F1 Score across Speaking Duration Percentages

Macro F1 Score

—

Modality
—— Speech + Physio

— Speech

0.50 /
0.45
— Text

NN\ Physio

0 20 40 60 80 100
Speaking Duration Percentage (15 s)

Figure 2: Sample counts (upper) and recognition perfor-
mance (Macro F1 score) of Speech + Physio, Speech,
Text, and Physio models (lower) across 15-second speak-
ing duration percentages.

5.4 Case Study

We further investigated the complementarity be-
tween different modalities, focusing on scenarios
with limited verbal content. As shown in Table 6,
we present three representative examples highlight-
ing the strengths of the physiological modality and
the fused Speech + Physio model in such situations.

In the first two examples (Duration: 10% and
11%), the verbal content is minimal or emotion-
ally subtle. There was a lack of clear emotional
expressions, leading both the text and speech mod-
els to misclassify them as low-valence. However,
the physiological signals captured subtle emotional
valence patterns that correctly indicated a high-
valence state. When fused with speech, the com-
bined model also succeeded, demonstrating the
complementary nature of the physiological modal-
ity.

The third case (Duration: 4%) consisted al-
most entirely of non-verbal vocalizations. Here,
both the Physio and Speech models correctly pre-
dicted the low-valence label, while the text modal-
ity failed—Ilikely due to the absence of meaningful
lexical input. The Speech model’s correct predic-
tion can be attributed to its ability to capture into-
nation cues.

These cases illustrate the robustness of physio-
logical signals and their synergistic role in multi-
modal recognition, particularly in emotionally am-
biguous or verbally limited contexts.

6 Conclusion and Future Work

In this study, we proposed a multimodal recogni-
tion framework for short-time binary emotional
valence recognition by integrating physiological
signals, speech, and textual information. Leverag-
ing a Japanese multimodal dialogue dataset, we ex-
tracted time-series representations of physiological
signals using a self-supervised encoder and com-
bined them with features from pre-trained Japanese
HuBERT and BERT models. We used a feature fu-
sion mechanism to dynamically integrate modality-
specific embeddings. Experimental results demon-
strate that incorporating both speech information
and physiological signals significantly enhances
the recognition performance of emotional valence,
especially in scenarios with limited or no verbal
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Duration | Transcriptions (15s) T S | S+P | GT
10% Almost all of them are mail-order. Ummm... Ah.... low low high high | high
11% No, there is no such thing. That is true. It is a little embarrassing. | low low high high | high
4% Mm-hmm. Mmm-hmm. Mm-hmm. high low low  low low

Table 6: Example from case study where Text or Speech models failed to classify emotional valence, while Physio
and Speech + Physio models succeeded. Examples were translated from original Japanese to English by authors.
Duration: Percentage of speaking duration in 15s, T: Text model, S: Speech model, P: Physio model, S + P: Speech

+ Physio model, GT: Ground Truth.

input. Furthermore, our ablation study reveals that
among the physiological signals (EDA, BVP, PPG,
and pupil diameter), EDA contributes the most to
valence recognition during dialogue.

While our findings highlight the value of phys-
iological signals, the recognition performance re-
mains modest and may not be sufficient for real-
world deployment without further enhancement.
In addition, splitting dialogue into 15-second frag-
ments may have been disadvantageous for the mod-
els relying on speech or text. In future work, we
aim to extend our framework beyond 15-second
segments toward real-time processing. We also
aim to explore regression-based methods for finer-
grained emotional valence recognition in order to
capture more subtle affective dynamics. Further-
more, we plan to investigate improved integration
methods for modalities that are less suited to short
segments, such as text, to better leverage contex-
tual information across temporal boundaries. Ulti-
mately, we intend to integrate the proposed frame-
work into dialogue systems, allowing conversa-
tional agents to adaptively respond to users’ emo-
tional cues in real-world interactive environments.
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