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Abstract

This paper presents an evaluation of the use
of large language models (LLMs) for grading
clinical reasoning during rheumatology med-
ical history virtual patient (VP) simulations.
The study explores the feasibility of using
state-of-the-art LLMs, including both general-
purpose models, with various prompting strate-
gies such as zero-shot, analysis-first, and chain-
of-thought prompting, as well as reasoning
models. The performance of these models in
grading transcribed dialogues from VP simu-
lations conducted on a Furhat robot was eval-
uated against human expert annotations. Hu-
man experts initially achieved a 65% inter-rater
agreement, which resulted in a pooled Cohen’s
Kappa of 0.71 and 82.3% correctness. The
best LLM, o3-mini, achieved a pooled Kappa
of 0.68 and 81.5% correctness, with response
times under 30 seconds, compared to approx-
imately 6 minutes for human grading. These
results indicate the possibility that automatic
assessments can approach human reliability un-
der controlled simulation conditions while de-
livering time and cost efficiencies.

1 Introduction

In recent years, the integration of new technolo-
gies into medical education has reshaped tradi-
tional pedagogical approaches by offering inno-
vative solutions that improve learning outcomes.
Among these, social robots and large language
models (LLMs) have emerged as promising tools,
delivering immersive, interactive experiences and
enhancing virtual patients (VPs). VPs simulate
clinical scenarios, enabling students to engage in
diagnostic and therapeutic decision-making pro-
cesses (Cook et al., 2007), while social robots use
advanced technologies to facilitate intuitive inter-
actions (Al Moubayed et al., 2012). This dual ap-
proach fosters clinical reasoning (CR) skills and
meets the growing demand for complementary ed-
ucational resources.

Figure 1: The Social Robot VP System Used by the
Medical Students and the following Grading Schema

CR, i.e., “the application of knowledge to collect
and integrate information from various sources to
arrive at a diagnosis and management plan” (Cook
and Triola, 2009), is an important part of medical
education and widely recognized across health pro-
fessions (Gordon et al., 2022). High-quality CR
assessment ensures that medical schools prepare
competent learners, which is vital since faulty CR
is a major contributor to diagnostic errors affect-
ing patient safety (Gordon et al., 2022). Conse-
quently, strategies to enhance CR education and
assessment have become a focus in health profes-
sions research. However, because CR relies heavily
on interaction, physical and economic constraints
limit hands-on training. Thus, innovative meth-
ods are needed to boost communication skills and
adaptability in complex clinical settings. LLMs
can transform these methods by simulating realis-
tic patient–doctor interactions (Borg et al., 2024b;
Henkel et al., 2024) and creating personalized, in-
teractive experiences that offer more realistic VP
interactions (Borg et al., 2024a). As noted in Graf
et al. (2024), reviews show that VP systems im-
prove CR and knowledge acquisition compared to
no intervention, though their benefits may be mod-
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est relative to conventional methods (Plackett et al.,
2022; Cook et al., 2010; McGaghie et al., 2010).

In this paper, we implement and evaluate an as-
sessment model using LLMs to support medical
students in learning CR in rheumatology and to
provide objective performance assessments. To val-
idate the assessment model we benchmark its grad-
ing capabilities with practising rheumatologists as
shown in Figure 1. Our research question is:

• RQ: How accurately can a large language
model assess medical students’ clinical rea-
soning skills in comparison to physicians that
specialize in rheumatology?

2 Related Work

2.1 Virtual Patients
VPs are computer simulations that replicate clini-
cal scenarios, enabling learners to take patient his-
tories, perform examinations, and make diagnos-
tic and therapeutic decisions (Cook et al., 2007).
They allow students to progress through cases in
controlled settings to refine diagnostic skills and
CR (Kononowicz et al., 2015; Cook et al., 2010).
VP designs have evolved from simple chatbots
(Cameron et al., 2019) to embodied conversational
agents (Campillos-Llanos et al., 2020; Pantziaras
et al., 2015), as cited in (Graf et al., 2024). Re-
cent advances incorporate social robots using fa-
cial animation and real-time emotion generation
via LLMs (Mishra et al., 2023; Belpaeme et al.,
2018; Al Moubayed et al., 2012) to enhance en-
gagement and authenticity (Borg et al., 2024b).
While earlier work focused on human–robot inter-
actions, few studies have combined social robotics
with LLM-based evaluation frameworks. Our work
bridges this gap by integrating LLM-driven assess-
ments into VP systems augmented by social robots
(Goodrich and Schultz, 2008; Kang et al., 2024;
Akhyani and Moradi, 2023; Flores, 2024). Em-
pirical evidence supports that such VP simulations
improve exam performance and learner satisfaction,
though challenges in scenario complexity and au-
thentic conversational dynamics persist (Cook and
Triola, 2009; Borg et al., 2024a; Edelbring et al.,
2011; Stamer et al., 2023; Holderried et al., 2024;
Suárez et al., 2022).

2.2 Clinical Reasoning in Medical Education
CR is central to medical education, involving the
interpretation of patient symptoms, diagnostic tests,
and imaging to form diagnoses and treatment plans

(Richards et al., 2020; Huang et al., 2014). It
includes both non-analytic (System 1) processes
based on pattern recognition and intuition, and ana-
lytic (System 2) processes, characterized by deliber-
ate evidence evaluation, and (Eva, 2005; Richards
et al., 2020; Edelbring et al., 2018). This duality
is evident in diagnostic reasoning, which classifies
conditions from objective data (Cook et al., 2018),
and management reasoning, which dynamically
adjusts treatments in response to evolving patient
conditions (Cook et al., 2019). VP simulations pro-
vide a safe environment for learners to iteratively
apply and reflect on both strategies.

2.3 Flaws with Human Evaluation

Traditional evaluation in medical education is com-
promised by human factors such as implicit bi-
ases, leading to inconsistent grading (Sadler, 2009;
Quinn, 2020). Examiner fatigue, stress, and cogni-
tive overload further exacerbate grading inconsis-
tencies (Brackett et al., 2013; Klein, 2002). In ad-
dition, moral dilemmas, which balance strict rubric
adherence with sensitivity to individual circum-
stances and varying subject expertise, undermine
the consistency, objectivity, reliability, and validity
of traditional evaluation systems (Tierney, 2015;
Bloxham et al., 2016; Boyd and Bloxham, 2007;
Brookhart, 1997).

2.4 LLMs in Medical Education and
Evaluation

LLMs are transforming medical education by pro-
viding scalable, objective, and efficient assessment
tools. Recent studies show that LLMs can evaluate
short answer questions with accuracy comparable
to human evaluators (Henkel et al., 2024). For
instance, a study on OSCEs using the Master Inter-
view Rating Scale reported off-by-one accuracies
of 67–87% and thresholded accuracies of 75–88%,
with excellent intra-rater reliability (α = 0.98 for
gpt-4o) across clinical domains (Geathers et al.,
2025). This approach reduces resource burdens
(Cavalcanti et al., 2021; Kasneci et al., 2023; Wil-
son et al., 2021; Ruwe and Mayweg-Paus, 2024)
while supporting nuanced evaluations. Beyond per-
sonalized feedback, LLMs have shown promise
in assessing recorded medical conversations, po-
tentially transforming evaluations of clinical com-
munication skills (Butow and Hoque, 2020; Çiçek
et al., 2024). Their primary advantage in this study
is the standardization of assessments, reduction
of grading biases, and production of consistent,
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reproducible evaluations. Nevertheless, effective
integration requires oversight to align with peda-
gogical goals and address ethical and bias concerns
via transparency, audit trails, explainability, and
continuous human supervision (Giannakos et al.,
2024; Çiçek et al., 2024).

3 Methodology

Our primary objective was to evaluate the use of
LLMs for objectively grading the CR skills of medi-
cal students during a rheumatology medical history
simulation. This was conducted in close collabora-
tion with Karolinska Institute in Stockholm, Swe-
den, as part of a clinical teaching course in rheuma-
tology. In the course, a VP system designed to sim-
ulate realistic clinical scenarios to assess CR was
used, featuring five different patient cases (Borg
et al., 2024b,a).

3.1 Virtual Patient Platform
The VP platform used the Furhat robot
(Al Moubayed et al., 2012), integrated with
the OpenAI LLM gpt-3.5-turbo (OpenAI, 2025a)
designed to control interactive dialogues and
mimic patient-doctor conversations. The Furhat
robot features an animated face and a neck that
enables realistic head movements, which have
been hypothesized to enhance realism during VP
encounters (Al Moubayed et al., 2012). In addition,
the robot conveys subtle facial expressions and
gaze behaviours to indicate the emotional state of
the patient (Mishra et al., 2023). To facilitate the
interaction, the Furhat robotics platform was used
in conjunction with the Furhat software develop-
ment kit (FurhatSDK) (Al Moubayed et al., 2012),
integrated with the OpenAI gpt-3.5-turbo large
language model (Brown et al., 2020) prompted
to generate appropriate facial expressions at
predefined anchor points in the conversation. This
ensured that the robot’s responses aligned with
the intended emotional states (Irfan et al., 2023).
These expressions were selected from a predefined
set available in the FurhatSDK, determined
contextually based on the VP’s responses, which
varied stochastically in emotional tone (Borg et al.,
2024a).

To generate authentic patient responses and
avoid assistant-like phrasing, the LLM was pro-
vided with a detailed patient description embedded
within the prompt. This included specific instruc-
tions on generating dialogue lines, as well as the
last ten dialogue turns between the student and

the VP, ensuring contextual continuity (Borg et al.,
2024a). A challenge when using LLMs in turn-
based dialogue is response latency, which can lead
to misinterpretation of conversational flow (Irfan
et al., 2023). To mitigate this, a turn-holding cue
was implemented using an LED light positioned at
the bottom of the robot, which signaled the turn-
taking status through pre-specified colors (Skantze
et al., 2015). Before engaging with the VP case
on the social robotic platform, students received
introductory information about the case, including
relevant laboratory test results and corresponding
reference values (Borg et al., 2024a).

3.2 Virtual Patient Cases

The VPs used in this study are identical to those pre-
viously employed by Borg et al. (2024b) and in the
course at Karolinska Institute, and were designed
to simulate a range of rheumatological diseases.
Each patient profile was meticulously developed in
English to reflect realistic medical histories, symp-
toms, and family backgrounds, thus offering di-
verse scenarios for evaluation. The study included
Angelica, a 64-year-old woman with Giant Cell
Arteritis (GCA) who experiences severe headaches,
jaw claudication, and visual disturbances; Hanna,
a 61-year-old woman with Dermatomyositis/An-
tisynthetase Syndrome characterized by progres-
sive muscle weakness, skin rash, and difficulty
swallowing; Joel, a 42-year-old man with Psori-
atic Arthritis manifested through intermittent joint
pain, swelling, and a family history of psoriasis;
Mikael, a 70-year-old man with GCA/Polymyalgia
Rheumatica (PMR) marked by muscle stiffness in
the shoulders and hips along with fatigue; and Pe-
ter, a 30-year-old man with Ankylosing Spondylitis
suffering from chronic lower back pain and stiff-
ness that worsens with inactivity yet improves with
movement.

3.3 Data Collection and Preparation

We assembled a dataset of 154 previously recorded
and transcribed dialogues between medical stu-
dents and the social robot from previous itera-
tions of the rheumatology course conducted during
spring and fall of 2024. The students were all
from the sixth semester of the medical programme
conducted at Karolinska Institute, and part of a
course in internal medicine. The dialogues were
conducted in English, but none of the speakers had
English as their native language. All dialogues
were anonymized and recordings were collected
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exclusively from students who had consented to
their use in future studies. An excerpt from one of
the transcribed dialogues between a student and the
VP Mikael can be seen in Figure 2.

Figure 2: Example Part of Transcribed Dialogue

Each dialogue was manually categorized into
one of three quality tiers: Usable (79 dialogues),
Acceptable but with deviations (26 dialogues), and
Unusable (49 dialogues), based on whether the stu-
dents maintained their role as clinicians, avoided
off-topic discussions, and whether the dialogue ex-
hibited minimal transcription errors.

3.4 Dialogue Segmentation and Selection

To ensure a balanced evaluation dataset, dialogues
were segmented according to their speech turn
counts, providing an even distribution of conversa-
tion lengths. We then selected two balanced groups
of 15 usable coded dialogues (as defined in Sec-
tion 3.3). The selection process ensured diversity
across the five unique virtual patient cases, while
also making sure that the representation of dialogue
lengths, from short to long, was balanced. The se-
lection was intentionally limited to these objective
criteria to avoid introducing subjective bias.

3.5 Assessment Framework

To grade the dialogues, an assessment framework
was developed in collaboration with medical ex-
perts at Karolinska Institute before any of them had
seen the 30 student dialogues previously selected.
The experts relied solely on current CR standards
and their own experience, thus keeping the frame-
work blind to the data it would later evaluate. The
goal was to establish a set of questions that med-
ical professionals should ask when taking a med-
ical history from patients with specific rheumatic
conditions. This process resulted in five distinct
sets of questions, one for each patient case in the

data set, each consisting of three parts. The frame-
work includes Start Questions, which establish the
dialogue’s context; General Questions, which ad-
dress broader conversational topics; and Specific
Questions, which require detailed responses tai-
lored to the patient’s symptoms, therefore varying
for each patient. All questions are designed to be
answered with one of four options: Yes, No, Par-
tially, and N/A, with N/A used when the patient
volunteers information about a symptom without
being asked, as illustrated in Figure 2. The Start
Questions and General Questions are consistent
across all patient cases. For instance, in the case
of Mikael, the framework asks whether the student
initiated the dialogue with open-ended questions,
whether they inquired about unintentional weight
loss, and whether they questioned the patient re-
garding morning stiffness. An example of a full
questions set is provided in Appendix A for Mikael.

3.6 Human Expert Grading

Human expert grading of the selected dialogues
was conducted by two independent pairs, each con-
sisting of a junior and a senior rheumatology physi-
cian. Each group graded one set of 15 dialogues
following the same instructions and a joint ses-
sion where all graders could clarify any questions
regarding the process. Using the assessment frame-
work, every dialogue was evaluated based on a
predefined set of questions for each patient. Ini-
tially, both experts in each group independently
graded the dialogue. If discrepancies arose, the
senior grader from the alternate group stepped in
to grade the questions with conflicting responses.
In cases where no consensus emerged, meaning
that all three graders provided different answers,
the senior grader from the alternate group reviewed
all assessments and made the final decision. This
produced a true consensus grade for each dialogue,
which then served as a benchmark to evaluate the
performance of both individual human graders and
the LLM. The consensus process ensured that the
benchmark reflected clinical judgement shaped by
tacit knowledge, human subjectivity, empathy, and
contextual judgement.

3.7 LLM Grading

Since each human graded 15 dialogues, which
equals 60 total graded dialogues, each LLM was
prompted to grade each of the 30 dialogues twice.
This process of double grading was implemented
to assess the internal consistency and reliability
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of the LLM models. The average percent vari-
ation between the two independent gradings for
each dialogue was then analysed to quantify this
consistency. Furthermore, conducting two grading
instances per dialogue enabled the calculation of
performance metrics such as pooled Kappa and per-
cent correct, facilitating a comparison of the LLMs’
capabilities against the benchmark established by
the human expert graders.

The assessment models were developed using
various prompting techniques, including zero-shot
(0S), analysis-first (AF), and Chain-of-Thought
(CoT) approaches, and tested across six different
OpenAI models (OpenAI, 2025c): two general-
purpose models (gpt-4o and gpt-4o-mini) and four
reasoning models (o3-mini, o1, o1-preview and
o1-mini). We strategically included both model
types to discern if inherent reasoning capabilities
offered an advantage in this evaluation task. We
also incorporated the reasoning model DeepSeek
R1 (DeepSeek, 2025a), to broaden our assessment
to include models beyond the OpenAI ecosystem.
0S learning allows for the entire dataset to be used
for testing, thereby enhancing the validity of the re-
sults. CoT prompting, initially introduced as a few-
shot technique, improves reasoning by presenting
answers as step-by-step explanations within exam-
ples. Building on this, 0S-CoT employs a template-
based approach for reasoning without requiring
examples, relying on prompts such as “Let’s think
step by step” to guide the model in producing struc-
tured reasoning. This method has demonstrated sig-
nificant improvements in challenging benchmarks
and is most effective when paired with the AF ap-
proach, which prompts the model to generate a de-
tailed analysis before answering (Wei et al., 2023;
Kojima et al., 2022; Jia et al., 2024). Therefore,
the general-purpose models were prompted using
0S, AF, CoT instructions, guiding them to produce
step-by-step reasoning, as seen in Figure 3. Al-
ternative approaches such as few-shot prompting,
reinforcement learning fine-tuning, and interactive
feedback loops were considered but ultimately not
adopted due to their potential to introduce bias,
restrict generalization, or obscure the model’s na-
tive reasoning process. Recent surveys on efficient
prompting methods provide additional context for
these choices, emphasizing that prompt engineer-
ing based on efficient design, rather than extensive
fine-tuning, offers robust and scalable performance
across diverse tasks (Chang et al., 2024).

The reasoning models were prompted using only

Figure 3: General-purpose Model Prompt Used to Grade
Dialogues

0S, as seen in Figure 4, since they have internal
instructions that achieve AF and CoT effects with
reinforcement learning, and multi-round conversa-
tions using reasoning tokens (OpenAI, 2025d,b;
DeepSeek, 2025b).

Figure 4: Reasoning Model Grading Prompt Used to
Grade Dialogues

The models assessed each dialogue by applying
the same set of assessment questions used by the
human experts, with both dialogue and questions
provided in the prompt. Examples of the assess-
ment output of one of the general-purpose models
and one of the reasoning models can be seen in
Figure 5 and Figure 6.

3.8 Evaluation of Grading Performance

The performance of each LLM and human was eval-
uated by comparing the grades for each dialogue
against the consensus human grades (Agreement
with Correct Grades). In addition, we employed
Cohen’s Kappa to quantify chance-corrected agree-
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ment, defined as

κ =
Po − Pe

1− Pe

where Po is the observed proportion of agreement
with the correct grades and Pe is the expected
agreement by chance (McHugh, 2012; Landis and
Koch, 1977). This measure provides a more robust
and conservative estimate of the genuine agree-
ment on the CR skills being assessed. Finally, ef-
ficiency was assessed by recording the time taken
by the LLM to grade dialogues and benchmarking
it against the grading duration of human experts,
thereby emphasizing potential time and cost sav-
ings.

4 Results

This section presents the quantitative results of both
human evaluations and automated dialogue assess-
ment LLMs. The grading was performed on 30
dialogues comprising a total of 701 questions. In
Tables 2-6 the best performances of each metric are
highlighted in bold.

Figure 5: General-purpose Model gpt-4o Incorrect Grad-
ing of Specific Question

Figure 6: Reasoning Model o3-mini Correct Grading of
Specific Question

4.1 Human Inter-Grader Agreement and
Consensus Building

In the initial grading round, the graders achieved
an average agreement of 65%. In the second round,
where a senior grader reassessed questions with
conflicting responses, consensus was reached for
92.6% of the questions (with only 52 questions re-
maining in disagreement). Finally, after a thorough
review in which the senior graders considered the
responses of the other graders and cast a decisive
vote, all questions ultimately reached consensus.
The final consensus has the following distribution

Grader
Number of
Dialogues

Avg (%)
Variation

Pooled
Kappa

Percent
Correct

Grader 1-(J) 15 31.3 0.80 88.0
Grader 2-(S) 15 31.3 0.59 74.9
Grader 3-(J) 15 26.1 0.66 78.9
Grader 4-(S) 15 26.1 0.79 88.0

All Graders 60 6.7 0.71 82.5

Table 1: Grading Performance Metrics for Human
Graders

Model
Number
of Dial.

Avg (%)
Variation

Pooled
Kappa

Percent
Correct

DeepSeek R1 60 14.4 0.62 77.3
gpt-4o-mini 60 22.7 0.49 69.0
gpt-4o 60 16.4 0.57 74.8
o1-mini 60 21.0 0.56 74.9
o1-preview 60 11.1 0.65 79.6
o1 60 10.8 0.66 80.4
o3-mini 60 10.4 0.68 81.8

Table 2: Grading Performance Metrics for Each LLM

of correct grades per grade type: 350 questions
graded with Yes, 288 with No, 53 with Partially,
and 10 with N/A.

4.2 Individual Human Grader Performance

Table 1 summarizes performance metrics for each
human grader with junior graders marked with (J)
and senior graders marked with (S). Here, Aver-
age (%) Variation indicates the average percent
variation of disagreements per dialogue between
paired graders, while the Kappa metric quantifies
individual rater reliability when compared to the
correct grades. Notably, Grader 1-(J) and Grader
4-(S) (with 88.0% correct responses) outperformed
Grader 2-(S) (74.9%) and Grader 3-(J) (78.9%).
The combined performance of all graders shows a
pooled Kappa of 0.71 and an average correctness
of 82.5%.

4.3 LLM Grading Performance

Table 2 presents the overall performance of each
assessment model, based on two independent grad-
ings per dialogue. Metrics include the average per-
cent variation (i.e., the mean number of discrepan-
cies between the two gradings), the pooled Kappa
(quantifying the individual model reliability when
compared to the correct grades), and the overall per-
centage correct. The o3-mini model had the lowest
average variation (10.4%), highest pooled Kappa
(0.68), and the highest percent correct (81.8%).
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Model Shorter Medium Longer

DeepSeek-R1 77.7 79.6 74.8
gpt-4o-mini 77.1 65.1 64.5
gpt-4o 72.7 78.9 72.9
o1-mini 75.6 75.8 73.3
o1-preview 79.1 82.9 76.9
o1 80.4 83.6 77.4
o3-mini 84.7 82.4 78.2

All Human Graders 82.9 83.6 80.6

Table 3: Percent Correct Grades by Dialogue Length for
each LLM and Aggregated Human Result

Model Yes No Partially N/A

DeepSeek R1 88.2 74.1 28.3 50.0
gpt-4o-mini 64.6 83.3 32.1 10.0
gpt-4o 86.6 71.2 26.4 20.0
o1-mini 91.3 68.6 12.3 15.0
o1-preview 94.4 74.5 21.7 15.0
o1 93.9 75.7 21.7 55.0
o3-mini 90.6 84.2 19.8 35.0

All Human Graders 83.7 85.4 61.3 65.0

Table 4: Percent Correct Grades by Grade Category for
each LLM and Aggregated Human Result

4.4 Dialogue Length Analysis

Table 3 shows the accuracy trends across three
dialogue-length groups, each with 10 dialogues:
Shorter (11-81 speech turns), Medium (81-113
speech turns), and Longer (125-200 speech turns).
Human graders maintain a stable performance
(around 81–84%), while model accuracies vary.
For instance, the o3-mini model performs best on
Shorter dialogues (approximately 85%) and de-
clines to about 78% on Longer ones. In contrast,
gpt-4o-mini exhibits a more pronounced drop in ac-
curacy on Medium and Longer dialogues, while the
other models have a similar pattern in performance
to humans.

4.5 Correct Grade Category Analysis

Table 4 breaks down the accuracy by grade cate-
gory: Yes, No, Partially, and N/A, for each model
and all human graders. Models generally perform
well in the Yes and No categories, with several
achieving over 90% and 80% respectively. How-
ever, accuracy drops noticeably in the Partially and
N/A categories, where human graders outperform
all models. This suggests that while models can
reliably identify clear-cut responses, they struggle
with ambiguous or nuanced cases that humans han-
dle more effectively.

Model
Start

Questions
General

Questions
Specific

Questions

DeepSeek R1 77.5 88.8 69.2
gpt-4o-mini 77.1 79.4 58.9
gpt-4o 75.8 86.7 66.0
o1-mini 69.6 88.1 67.4
o1-preview 77.9 92.3 71.3
o1 80.8 91.5 72.4
o3-mini 84.6 92.1 73.6

All Human Graders 80.4 89.8 77.7

Table 5: Percent Correct by Question Category of the
Rubric for Each LLM and Aggregated Human Results

Model
Average
Time (s)

Std
Dev (s)

Min
Time (s)

Max
Time (s)

DeepSeek R1 53.2 41.9 17.4 189.9
gpt-4o-mini 27.9 13.4 6.0 99.5
gpt-4o 30.4 9.7 10.5 59.1
o1-mini 30.3 12.5 11.5 83.4
o1-preview 57.3 27.5 31.3 230.1
o1 98.9 18.0 30.6 132.5
o3-mini 29.2 6.6 17.2 47.9

Table 6: Timing Metrics for Each LLM

4.6 Question Category Analysis

This section examines model performance across
different types of question categories (as distin-
guished in Section 3.5) to assess how well each
model handles varying dialogue challenges. As
shown in Table 5, while all models tend to achieve
high accuracy on General Questions, there are no-
table discrepancies in the Start Questions and Spe-
cific Questions categories. For instance, the o3-
mini model performs better than human graders in
the Start Questions and General Questions cate-
gories, though there remains a gap in its handling
of Specific Questions compared to human graders.

4.7 Timing Performance

Table 6 summarizes the timing metrics for each
model. The timing was recorded from the moment
an API call was initiated until the reply was re-
ceived. Notably, the gpt-4o-mini model achieved
the fastest average response time (27.9 s), while
the o1 model exhibited the longest (98.9 s).

5 Discussion

Below we integrate our observations on perfor-
mance, efficiency, and the future directions for this
assessment approach.
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5.1 Impact of Human Grader Involvement on
Ground Truth Construction

A key issue in this study is the reliance on human
experts to establish the ground truth for LLM evalu-
ations. Since these experts both defined the assess-
ment criteria and graded the student dialogues, the
benchmark reflects their subjective judgments. De-
spite a three-step consensus process aimed at reduc-
ing bias (Section 4.1), residual subjectivity affects
inter-rater reliability. This variability, especially
in ambiguous categories like Partially and N/A,
means that the human performance numbers might
reflect adherence to a specific expert-defined stan-
dard rather than absolute CR ability, while LLMs
attempt to interpret these criteria without the inher-
ent alignment of human evaluators.

5.2 LLM Versus Human Grading:
Performance and Nuance

The o3-mini model’s pooled Kappa of 0.68, close
to both the pooled human Kappa of 0.71 and the
initial 65% inter-rater agreement among human
graders, indicates that LLMs can achieve compara-
ble grading consistency. In Yes and No responses,
LLMs such as o1-preview and o3-mini reached ac-
curacies of over 80% (see Table 5). Additionally,
the o3-mini outperformed human graders in Start
Questions and General Questions. Nonetheless,
both LLMs and humans struggled with more nu-
anced responses (i.e., Partially and N/A) and with
Specific Questions, highlighting differences in per-
formance across different types of processing. This
indicate LLMs are effective at evaluating System
1 CR (Eva, 2005), i.e., adherence to basic com-
munication protocols and identifying key words
and patterns (Mirchandani et al., 2023; Xu et al.,
2024), but find it challenging to evaluate System
2 CR (Eva, 2005), i.e., adherence of deeper clini-
cal context, where integration of dialogue nuances
diagnostic hypotheses is needed.

5.3 Time and Cost Efficiency

LLM-based assessments present a considerable
time advantage by grading dialogues in under a
minute compared to approximately 6 minutes for
human experts. This reduction alleviates grad-
ing fatigue and cognitive overload (Brackett et al.,
2013; Klein, 2002), while potentially lowering in-
stitutional costs. The resulting time savings can
allow educators to focus on curriculum develop-
ment, personalized mentoring, and further research,

with enhanced scalability and processing speed ul-
timately contributing to improved educational out-
comes (Henkel et al., 2024; Ruwe and Mayweg-
Paus, 2024; Gordon et al., 2022).

5.4 Dialogue Complexity

The impact of dialogue length on grading accuracy
was evident (See Table 3). For example, the o3-
mini model’s accuracy declined from about 85%
on short dialogues to approximately 78% on longer
ones, highlighting the challenge that extended con-
text poses for LLM architectures, especially for
questions requiring the synthesis of dispersed in-
formation from earlier turns. In contrast, human
graders maintained a relatively stable performance
regardless of dialogue length, highlighting their
robustness in complex interactions. Given that
comprehensive CR skills depend on integrating
scattered dialogue elements, the arbitrary catego-
rization of dialogue lengths, determined by fixed di-
alogue turns, may inadequately capture interaction
complexity and unfairly penalize LLMs, particu-
larly when minor increases in length around these
thresholds can lead to disproportionate accuracy
drops.

5.5 Variability and Consistency in Grading

Both human graders and LLMs displayed vari-
ability in their assessments, but at different scales.
While human experts showed an initial inter-rater
agreement of 65%, the o3-mini model demon-
strated impressive internal consistency with an av-
erage percent variation of 10.4%. This stability
suggests that certain LLMs could help standardize
and render grading more equitable by mitigating
individual human biases, thereby enhancing the
objectivity of CR skill evaluations.

5.6 Future Directions

Future research should examine the generalizabil-
ity of LLM-based assessments across other med-
ical specialities and dialogue-intensive domains
(Stamer et al., 2023; Giannakos et al., 2024; Henkel
et al., 2024), to assess whether the observed effi-
ciency and objectivity extend beyond rheumatology.
To reduce grader bias and obtain a more indepen-
dent ground truth, future studies should include
a separate group of rheumatology experts, unin-
volved in the framework development or consensus-
building, to grade a subset of dialogues. Compar-
ing their evaluations with the original consensus
and LLM assessments could clarify the extent of
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subjectivity in human grading and reveal whether
initial performance metrics were inflated. Lastly,
improving how ambiguous responses are handled,
through model design or refined assessment crite-
ria, will be critical for enhancing the reliability and
validity of automated CR evaluations.

6 Conclusion

Under controlled VP simulation conditions, LLM-
based assessment achieved near-human reliability,
suggesting that they could offer a provisional yet ef-
ficient way to assess medical students’ CR skills in
rheumatology history-taking. The o3-mini model
achieved a Cohen’s Kappa of 0.68, nearly match-
ing the human expert consensus of 0.71, a 81.8
percent correct grades compared to 82.5 by human
experts and graded dialogues in under 30 seconds
compared to roughly 6 minutes for experts, sub-
stantially reducing grading time. Although chal-
lenges remain in consistently assessing ambiguous
responses and accounting for human biases, these
findings highlight the potential for scalable, objec-
tive assessments amid the constraints of traditional
CR training. Future work should refine grading in-
structions and validate these tools in other clinical
settings, as well as in live clinical encounters, to
further enhance medical educational outcomes and
patient care.

7 Limitations

A primary limitation of this study is that the di-
alogues were not originally recorded with the in-
tent of being graded, which may have introduced
additional variability in both human and LLM as-
sessments. Moreover, the controlled simulation
environment differs from real-world clinical en-
counters, where factors such as patient variability
and dynamic interactions may further influence
grading outcomes. Also, a limitation is that we
only used usable-coded dialogues in our analysis.
The analysis could have been broader by letting the
humans and models also grade dialogues of lower
quality. Finally, the grading of dialogues by mod-
els was done on different computers, with different
internet connections at different times. This can
affect the timing of the grading.
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Start Questions:

• Did the student ask open-ended questions ini-
tially?

• Did the student ask about the patient’s own
thoughts regarding their symptoms?

• Did the student ask the patient about specific
concerns/worries about their symptoms?

• Did the student ask what the patient hopes to
gain from the visit?

General Questions:

• Did the student ask if the patient has any past
or current disease/worries?

• Did the student ask the patient about their
lifestyle factors (such as if the patient smokes,
consumes alcohol, is physically active)?

• Did the student ask if the patient has any aller-
gies?

• Did the student ask if the patient is currently
taking any medications?

• Did the student ask if the patient has any
hereditary diseases in their family?

• Did the student ask if the patient had a fever?

• Did the student ask if the patient has experi-
enced unintentional weight loss?

• Did the student ask if the patient has had night
sweats?

Specific Questions:

• Did the student inquire about muscle pain?

• Did the student inquire about the character of
the muscle pain?

• Did the student inquire about the location of
the muscle pain?

• Did the student inquire about whether the pain
radiates?

• Did the student inquire about arm claudica-
tion?

• Did the student inquire about symmetry of the
muscle pain?

• Did the student inquire about variation during
the day of the symptoms?

• Did the student inquire about morning stiff-
ness?

• Did the student inquire about how long does
morning stiffness last?

• Did the student inquire about medications
taken for pain and their efficacy?

• Did the student inquire about new-onset
headache or tenderness in the temporal artery?

• Did the student inquire about jaw claudicatio?

• Did the student inquire about general malaise?

• Did the student inquire about vision changes
(e.g., vision loss, double vision, blurring)?

B Example dialogue with VP Joel

The following transcript shows the automatic
speech recognition output from the user, and does
not necessarily reflect what the user actually said:

Robot: Hi, doctor. My name is Joel and I have
been troubled by bodily pains for many years but
no one has been able to find the cause. Can you
help me?
User: uh of course uh tell me more
Robot: I have been experiencing pain in my hands,
toes, and one of my achilles tendons, and recently
it has spread to my right knee.
User: or how long have you been in pain
Robot: I can’t remember when it started exactly,
but it’s been intermittent for many years and has
been gradually getting worse.
User: so how did it start
Robot: It just started slowly, I can’t really pinpoint
a specific event or injury that could have caused it.
User: uh where where do the pain start
Robot: The pain started in my hands and toes and
then gradually spread to my achilles tendon and
now my right knee.
User: how would you describe the pain
Robot: The pain feels like a burning sensation and
can be quite unbearable at times.
User: when when uh when is the pain uh
Robot: The pain is worst in the morning when I
first wake up, but it is present throughout the day
and sometimes makes it difficult for me to sleep at
night.
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User: do you wake up from the pain
Robot: Yes, sometimes I wake up from the pain in
my knee.
User: do you feel like the pain gets worse or better
with exercise
Robot: I’ve noticed that sometimes the pain feels
a bit better after I’ve exercised, but it doesn’t last
for very long and the pain always comes back.
User: have you experienced any stiffness
Robot: Yes, I have experienced morning stiffness,
and it’s usually worst when I first wake up in the
morning.
User: is the joint pain symmetrical
Robot: I do believe the pain is located in my joints,
but it’s not symmetrical.
User: that is
Robot: I have also been feeling fatigued and tired
lately, and I’m worried that my mental state is be-
ing affected by the pain.
User: uh have you noticed any any rashes or other
skin symptoms
Robot: No, I haven’t noticed any new rashes or
lesions on my skin, but a few months back I did
notice that my nails changed in character.
User: tell me more about that
Robot: I wasn’t sure if it was relevant to mention,
but my father and grandfather both had psoriasis,
and my father had plaques on his elbows.
User: control
Robot: I have actually started to wonder if I might
have psoriasis too and was interested in investigat-
ing that further.
User: yeah we will look into that do you have any
other uh illnesses or
Robot: I did have an irritable bowel when I was
younger, but it got better after I started to diet and
exercise better.
User: any medications
Robot: Yes, I currently take paracetamol for my
pain, Propavane to sleep at night, and Escitalopram
for my depression.
User: do you drink alcohol
Robot: No, I don’t drink alcohol often, maybe
once or twice a year on special occasions.
User: and how about smoking
Robot: Actually, I tried smoking a couple of times
during my college years, but that was a long time
ago and I haven’t touched a cigarette since then.
User: okay uh goodbye
Robot: Goodbye Doctor
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