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Abstract

Real-time collaborative dialogue tasks require
dynamic, instantaneous decision-making and
seamless coordination between participants,
yet most existing studies on collaborative di-
alogues primarily focus on turn-based textual
environments. This study addresses the crit-
ical gap in understanding human-human in-
teraction patterns within dynamic, real-time
collaborative scenarios. We present a novel
dataset collected from a real-time collabo-
rative cooking game environment inspired
by the popular game “Overcooked.” Our
dataset comprises detailed annotations of par-
ticipants’ task proficiency levels, game scores,
game action logs, and transcribed voice dia-
logues annotated with dialogue act tags. Par-
ticipants exhibited a broad range of gam-
ing experience, from highly proficient play-
ers to those with minimal exposure to gam-
ing controls. Through comprehensive anal-
ysis, we explore how individual differences
in task proficiency influence dialogue pat-
terns and collaborative outcomes. Our find-
ings reveal key dialogue acts and adaptive
communication strategies crucial for success-
ful real-time collaboration. Furthermore, this
study provides valuable insights into design-
ing adaptive dialogue systems capable of
dynamically adjusting interaction strategies
based on user proficiency, paving the way for
more effective human-AI collaborative sys-
tems. The dataset introduced in this study is
publicly available at: https://github.com/UEC-
InabaLab/OverCookedChat.

1 Introduction

Human-AI collaboration is emerging as a critical
research area within the field of AI (Wang et al.,
2020; Lai et al., 2021; Vössing et al., 2022). Mov-
ing beyond the traditional scope of AI as mere as-
sistance or automation tools, this paradigm aims
to tackle more sophisticated problems by syner-
gistically leveraging the complementary strengths

Figure 1: The collaborative cooking game environ-
ment (left) and contrasting communication examples
(right). While abstract instructions suffice between
experts, specific instructions are necessary when col-
laborating with a beginner, highlighting the need for
proficiency-adaptive communication.

of both humans and AI (Vats et al., 2024). Reflect-
ing this trend, there is a surge of research focusing
on collaborative frameworks where AI is treated
not just as a tool but as a partner, enabling humans
and AI to work together effectively towards shared
goals (Charakorn et al., 2020; Puig et al., 2021;
Sarkar et al., 2022; Zhang et al., 2024; Wang et al.,
2024).

While research exists on human-AI collabora-
tion for task completion through dialogue (Wu
et al., 2024; Mehta et al., 2024), many existing
environments primarily feature turn-based cooper-
ation, often neglecting the crucial aspect of real-
time interaction. Addressing this gap, Liu et al.
extended the collaborative cooking game environ-
ment (Wu et al., 2021), which was modeled af-
ter the popular game Overcooked, specifically to
assess human-AI collaboration in a real-time set-
ting. This environment imposes strict time limits
and necessitates high-frequency interactions and



765

rapid responses from both the human player and
the AI agent, simulating the pressures of time-
sensitive teamwork. Within this demanding con-
text, they developed an agent possessing the req-
uisite response speed and reasoning abilities to en-
gage in collaborative tasks with humans in this
real-time environment (Liu et al., 2024). However,
their agent primarily reacts to the human user’s ac-
tions and explicit instructions, effectively casting
the user into a fixed, directive role (i.e., the com-
mander). This imposed asymmetry forces the user
to constantly monitor the agent and provide guid-
ance, potentially increasing their cognitive load
and hindering the emergence of a truly synergis-
tic and adaptive partnership. Such a rigid inter-
action structure may ultimately limit the effective-
ness and fluidity of the collaboration.

Therefore, to foster natural and seamless collab-
oration, it is crucial for AI agents to adapt flex-
ibly to their human partners. In this study, we
focus specifically on adapting to the user’s profi-
ciency with the task. Considering user proficiency
is vital in environments requiring mutual under-
standing, such as collaborative work settings. For
instance, a reactive dialogue strategy where the
agent primarily awaits user instructions might be
effective for highly proficient users who prefer to
lead. This same strategy could hinder progress and
frustrate less experienced users who might benefit
from more proactive suggestions or guidance.

To investigate effective dialogue strategies tai-
lored to individual user characteristics, particu-
larly proficiency, this study undertakes the col-
lection of human-human collaborative task data.
We employ a collaborative cooking game environ-
ment previously utilized in (Wu et al., 2021; Liu
et al., 2024) as the platform for this data collec-
tion, as shown in Figure 1. The popularity of the
original Overcooked game also facilitates partici-
pant recruitment, particularly for finding individ-
uals with prior experience and potentially higher
task proficiency, which is beneficial for our study
focusing on proficiency-based adaptation. Our pri-
mary goal is to analyze this dataset to elucidate
the interplay between user proficiency levels, their
communication behaviors, and overall task perfor-
mance, thereby generating actionable knowledge
for designing agents capable of adapting to indi-
vidual users.

The main contributions of this work are as fol-
lows: (1) We collect and present a novel dataset
of human-human collaborative interactions within

a real-time, high-pressure task environment. (2)
We conduct a detailed analysis of this dataset,
identifying dialogue strategies crucial for success-
ful real-time collaboration, with a specific focus
on how these strategies vary based on user pro-
ficiency levels. (3) We offer actionable findings
and design guidelines, grounded in our empirical
analysis, to inform the creation of collaborative AI
agents that adapt to individual user proficiency.

2 Related Work

2.1 Collaborative Dialogue Games

Several dialogue-based game environments have
been proposed to investigate collaborative behav-
iors (Anderson et al., 1991; Narayan-Chen et al.,
2019; Jayannavar et al., 2020; Kim et al., 2019).
For instance, in a Minecraft-based environment
(Narayan-Chen et al., 2019), two users, designated
as a builder and an architect, collaborate via text
chat. The architect is given a target structure and
must instruct the builder on how to construct it.
In all these aforementioned environments, speak-
ers are assigned fixed roles, such as builder and
architect, where one participant typically needs to
guide the other.

More recently, research has also explored envi-
ronments that do not impose fixed roles on par-
ticipants (Ichikawa and Higashinaka, 2023; Jeknic
et al., 2024). In these settings, there are typi-
cally no strict time constraints for selecting the
next action, and situations demanding immediate
judgment are less common. This often simplifies
the process of inferring partner intentions and ad-
justing dialogue strategies, potentially leading to
smoother task progression.

2.2 Human-AI Collaboration

Collaborative task environments based on Over-
cooked have become widely used benchmarks for
research aiming to develop AI agents capable of
effective human-AI coordination. Notable ex-
amples of Overcooked-style environments include
the one employed in this study (Wu et al., 2021;
Liu et al., 2024), Overcooked-AI (Carroll et al.,
2019), and CuisineWorld (Gong et al., 2024).

Among these, Overcooked-AI (Carroll et al.,
2019) has arguably garnered the most significant
research attention. This environment primarily fo-
cuses on coordination through actions alone, as it
does not support dialogue between players. Con-
sequently, it has served as a popular benchmark
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for reinforcement learning approaches to multi-
agent coordination (Charakorn et al., 2020; Sarkar
et al., 2022; Wang et al., 2024). More recently,
Overcooked-AI has also been utilized as a testbed
for studying human-AI collaboration (Le Guil-
lou et al., 2023; Zhang* et al., 2025). However,
compared to the environment used in our work,
Overcooked-AI features significantly simplified
task mechanics. For instance, actions like chop-
ping and mixing ingredients are absent, and only a
single cooking method is available. We observed
that when humans play this simplified version us-
ing dialogue, the low task difficulty can lead to
relatively simple and potentially monotonous in-
teraction patterns. Therefore, we opted not to
use Overcooked-AI for this study, as our focus
is on analyzing richer collaborative dialogues that
emerge in more complex, time-pressured scenar-
ios.

Beyond cooking scenarios, other research av-
enues explore human-AI collaboration in differ-
ent settings. For instance, the Watch-And-Help
(WAH) (Puig et al., 2021) utilizes a virtual house-
hold environment where AI agents are developed
to assist humans with domestic chores (Zhang
et al., 2024). These studies focus on enabling AI to
understand implicit human needs and proactively
offer assistance within this collaborative context.

A notable limitation common to much of the
prior work discussed here, including research
leveraging both Overcooked-style environments
like Overcooked-AI and platforms like WAH, is
the general lack of consideration for the user’s pro-
ficiency or expertise level with the task. These
studies often implicitly assume a uniform user ca-
pability or do not explicitly model how collabora-
tion dynamics might change based on varying lev-
els of user skill. This gap highlights the need for
research into adaptive strategies that account for
user proficiency.

3 Data Collection

3.1 Collaborative Game Environment

For the data collection, we utilized our extended
version of the collaborative cooking game envi-
ronment presented in (Wu et al., 2021). Within
this environment, we collected human-human
voice dialogue data and game logs. This en-
vironment involves a time-constrained task with
complex interdependencies, specifically requiring
cooperation and communication between players.

The objective of the game is to achieve a high
score by preparing, cooking, and serving dishes
according to incoming orders. Throughout the
task, a constant number of orders appear, each
with its own time limit. Failure to serve an or-
der within its time limit incurs a score penalty. To
complete an order, players must follow a sequence
of steps: retrieve the necessary ingredients based
on the order, chop them, combine the chopped in-
gredients, cook them in a pot, plate the dish before
it overcooks, and serve it.

The game environment updates at 40 frames per
second (FPS). In each frame, each player can ex-
ecute one action: move (up, down, left, or right),
wait, or interact with an object (e.g., pick up an
ingredient, use a tool). In this study, we enhanced
the original game environment (Wu et al., 2021)
by improving the interface and operability and by
increasing task complexity through the addition of
one new ingredient and one new cooking method.
Within our environment, up to four different types
of ingredients and two cooking methods are uti-
lized. Players control either pink or blue charac-
ters and collaboratively complete incoming orders.

We designed several maps for the experiment:
two single-player maps used for the initial prac-
tice and proficiency assessment phases, and four
distinct collaborative maps for the main pair-based
sessions. All maps are detailed in Appendix A.

3.2 Experimental Procedure
Participants were recruited from the general pub-
lic. The data collection sessions were conducted
in person. Participants interacted with the collab-
orative game environment using Sony DualSense
controllers. Participants first received an overview
of the collaborative environment. To familiarize
them with the controls and game rules, they ini-
tially engaged in a solo practice session on a dedi-
cated training map for 200 seconds. Following the
practice, their task proficiency was measured us-
ing a different map designed for assessment. Par-
ticipants performed this task individually for 100
seconds, and the score obtained during this session
was recorded as their proficiency score.

After the proficiency measurement, participants
were paired up for the main data collection phase.
Each pair collaborated on four distinct game maps
sequentially, with a time limit of 100 seconds per
map. (Detailed descriptions of each map are pro-
vided in Appendix A.) To gather data across dif-
ferent partners, participants were re-paired with a
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Cooperation I was able to cooperate with my
partner.

Communication I was able to communicate effec-
tively with my partner.

Role Division We were able to divide roles ap-
propriately.

Self Guidance I was able to give accurate opin-
ions or instructions.

Partner Guidance My partner was able to give accu-
rate opinions or instructions.

Self Adaptation I was able to adjust my actions to
my partner.

Partner Adaptation My partner was able to adjust their
actions to me.

Relative Proficiency I believe I was more proficient in
the task than my partner.

Table 1: Post-Task Survey Items

different person for each of the four maps. This
procedure allowed us to collect four sets of inter-
action data (dialogue and in-game actions) per par-
ticipant, each with a unique partner.

Immediately following the completion of each
collaborative map session, participants individu-
ally completed a post-task questionnaire. The
questionnaire consisted of eight items, listed in Ta-
ble 1. Participants responded to each item using
a 5-point Likert scale, ranging from “1: Strongly
disagree” to “5: Strongly agree”.

The data collection procedure was approved by
the institutional review board (IRB) or ethics com-
mittee at the authors’ institution.

3.3 Data Collection Results

54 participants took part in the collaborative ses-
sions. After excluding data instances with techni-
cal issues, primarily due to microphone malfunc-
tions, the final dataset used for analysis comprises
collaborative task data and corresponding post-
task survey responses from 111 unique participant
pairs. The audio recordings captured during the
collaborative sessions were transcribed into text
using Google’s Gemini 2.5 Pro Preview 03-25.
Any errors resulting from the automatic speech
recognition process were manually reviewed and
corrected to ensure transcription accuracy.

Table 2 presents the overall statistics of the col-
lected dataset. Note that “Actions in Games,” as
listed in the table, refers to the count of in-game
actions excluding idle time or wait actions. This
total comprises “Move Actions” (player move-
ment) and “Interact Actions” (e.g., picking up
items, using tools, delivering orders). Figure 2 il-
lustrates the distribution of the proficiency scores
measured prior to the collaborative tasks. As the

Dialogues / Games 111
Utterances 3,412
Words in Utterances 22,844
Actions in Games 48,781
- Move Actions 34,649
- Interact Actions 14,132

Table 2: Statistics of the Dataset

Figure 2: Proficiency Score Distribution

figure shows, the participants exhibited a wide
range of proficiency levels. While some partic-
ipants achieved high scores (e.g., exceeding 100
points), a notable portion (n=9) recorded negative
scores, confirming the diversity in task expertise
within our participant pool.

3.4 Dialogue Act Annotation

To facilitate the analysis of communication pat-
terns, we annotated all transcribed utterances in
our dataset with dialogue act (DA) tags. The
DA tagset was designed primarily based on estab-
lished schemes: the Switchboard Dialog Act Cor-
pus (SwDA) (Jurafsky et al., 1997; Shriberg et al.,
1998; Stolcke et al., 2000) and the ISO 24617-2
standard for dialogue act annotation (ISO 24617-2
DA) (Bunt et al., 2017, 2020). While most tags in
our scheme directly correspond in name and func-
tion to tags within these established frameworks,
we also introduced two additional tags: Encour-
agement and Advice. We deemed these necessary
to capture specific communicative functions con-
sidered important for effective collaboration in our
task setting. A complete list of the tags used, along
with their descriptions, is provided in Appendix B.

The dialogue act tagging was performed auto-
matically using the Gemini 2.5 Pro Preview 03-
25. To ensure annotation consistency and mitigate
potential randomness, we set the model’s temper-
ature parameter to 1.0 and performed the anno-
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Figure 3: DA Annotation Results

tation process five times independently for each
utterance. The final DA tag assigned was deter-
mined by majority vote. We first evaluated the in-
ternal consistency of this automated process using
Krippendorff’s α across the five annotation runs,
achieving a score of 0.81, which indicates high
reliability of the automated procedure itself. The
specific prompts and procedures employed for the
automatic annotation are detailed in Appendix C.

Furthermore, to assess the quality against hu-
man judgment, we compared the results of our au-
tomated annotation (majority vote) with manual
annotations performed by a crowdworker. For this
comparison, a subset of 201 utterances from 5 dia-
logues was annotated by a crowdworker. The Co-
hen’s κ coefficient between the automated (major-
ity vote) and manual annotations was calculated
to be 0.604. While this value represents moder-
ate agreement, it is lower than the inter-annotator
agreement reported for SwDA (κ = 0.80) (Ju-
rafsky et al., 1997). We attribute this difference
partly to the nature of our dataset, which includes
many short, context-dependent utterances (e.g.,
single words like “Lettuce”) that are inherently
ambiguous, making the annotation task challeng-
ing. Considering this inherent ambiguity in our
real-time collaborative dialogue data, we believe
the achieved agreement level indicates that the au-
tomatic annotation results are of reasonably high
quality for the purpose of our analyses.

4 Analysis

4.1 Post-Task Survey Analysis

To investigate the relationship between partici-
pants’ subjective experiences captured in the post-
task survey and their objective task performance
(game score), we conducted an analysis using

Spearman’s rank correlation coefficient (ρ). Given
that the difficulty varied across game maps, we
normalized the game scores for each map using ro-
bust Z-scores before calculating the correlations.
This normalization accounts for potential varia-
tions in score distributions due to differing map
challenges. The correlation matrix resulting from
this analysis is presented in Figure 4.

First, strong positive correlations were observed
among several subjective items: Cooperation,
Communication, Role Division, Self Adaptation,
and Partner Adaptation. This suggests that partic-
ipants perceived these aspects of collaboration as
highly interrelated; effective communication and
clear role division likely contributed to feelings of
mutual adaptation and successful cooperation.

Second, a positive correlation was also found
between Partner Guidance and Partner Adaptation
(ρ = 0.61). This indicates that participants who
felt their partner provided appropriate guidance
were also more likely to perceive their partner as
adaptive. This could imply that effective guidance,
which likely requires observing the partner’s ac-
tions and needs, is interpreted as a key component
of adaptive behavior from the partner’s side.

Regarding the relationship between subjective
ratings and objective performance, moderate pos-
itive correlations were found between the robust
Z-score and both Role Division (ρ = 0.45) and
Partner Adaptation (ρ = 0.46). This aligns with
the expectation that effective role allocation and
mutual adaptation are crucial for achieving higher
scores in the collaborative task environment.

Interestingly, the correlation between the score
and Self Adaptation was weaker (ρ = 0.32) com-
pared to that with Partner Adaptation. Compar-
ing the average ratings, participants rated their
own adaptation (Self Adaptation, mean = 3.35)
slightly lower than their partner’s adaptation (Part-
ner Adaptation, mean = 3.58). This suggests a
tendency for participants to slightly underestimate
their own adaptability, or potentially reflects the
inherent difficulty in objectively assessing one’s
own adaptive behaviors during a fast-paced task.

Further analysis using Spearman’s rank cor-
relation was conducted to explore the relation-
ships between the game score (robust Z-score)
and objective behavioral metrics derived from the
game logs and dialogue data. These metrics in-
cluded utterance counts (Utts), interaction counts
(Interactions, excluding ’Move’ actions), and the
pre-measured proficiency scores (ProScore), cal-
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Figure 4: Spearman correlation between post-task sur-
vey results and cooperative game scores

Figure 5: Spearman correlation between post-survey
results and dialogue/game features

culated separately for the individual participant
(Self), their partner (Partner), and the pair com-
bined (Total). The results of this analysis are sum-
marized in Figure 5.

We found a moderate positive correlation (ρ =
0.42) between the game score and the total num-
ber of interactions performed by the pair (defined
as the sum of their in-game actions, excluding
’Move’ actions). This suggests that higher inter-
action frequency is associated with more efficient
task execution and, consequently, better perfor-
mance in the cooking task.

4.2 Communication Analysis

To identify dialogue strategies associated with
higher task performance, we conducted multiple
regression analyses using dialogue act (DA) tag
frequencies as predictors, with the robust Z-score
of game score as the dependent variable. We se-
lected the predictor variables through a two-step
process. First, we identified candidate predictors
by selecting dialogue act tags that occurred at least

50 times across the entire dataset. Second, this ini-
tial pool was refined using a combination of step-
wise regression (based on AIC) and adjustments
based on domain knowledge: We added the ’Re-
quest’ tag, as it is potentially crucial for guidance
especially between experts and beginners, and we
removed the ’Backchannel’ tag, considering its
relatively passive or reactive nature in active col-
laboration. This process yielded the 7 final predic-
tor tags: Inform, Suggest, Agreement, Thanking,
Apology, Confirm, and Request.1

In addition to analyzing the entire dataset (ALL,
n=111), we performed separate analyses based
on the difference in proficiency between partners
within each pair. We calculated the absolute differ-
ence (∆P ) between the proficiency scores of the
two participants in each pair. Based on this dif-
ference, pairs were categorized into three groups:
Low-Difference (Low-Diff; n=36) for pairs with
∆P ≤ 20, Medium-Difference (Med-Diff; n=35)
for pairs with 20 < ∆P ≤ 85, and High-
Difference (High-Diff; n=40) for pairs with ∆P >
85. The slight unevenness in group sizes is due to
multiple pairs having identical proficiency score
differences falling at the category boundaries.

4.2.1 Overall Analysis
The results of the multiple regression analyses
are presented in Table 3. The analysis across all
pairs reveals that higher frequencies of Inform,
Thanking, and Agreement are significantly asso-
ciated with higher game scores. This suggests that
collaborative behaviors emphasizing information
sharing about the current state and expressing mu-
tual agreement and appreciation are conducive to
better performance. Conversely, higher frequen-
cies of Suggest and Apology are significantly as-
sociated with lower scores. This indicate that fre-
quent suggestions could reflect ongoing difficul-
ties in reaching consensus or coordinating actions,
while frequent apologies likely point to the occur-
rence of errors or inefficiencies during the task.

4.2.2 Impact of Proficiency Difference
We then examined the results for the three groups
based on the proficiency difference between part-
ners. The results are also shown in Table 3.

In the Low-Diff group, pairs with similar profi-
ciency levels, a higher frequency of Apology was

1We checked for multicollinearity using the Variance In-
flation Factor (VIF); all values were below 5, indicating it
was not a significant concern.



770

DA ALL Low-Diff Med-Diff High-Diff Low-Diff-H Low-Diff-L
Inform 0.059* 0.043 0.094* 0.056* -0.024 0.169
Request 0.017 -0.030 -0.074 0.119* -0.278* -0.039
Thanking 0.160* 0.214 0.204 0.082 0.446* 0.341
Confirm -0.067 -0.050 0.136 -0.109 -0.046 -0.189
Agreement 0.178* 0.085 0.196* 0.388* 0.745* 0.021
Apology -0.151* -0.385* -0.074 0.152 -0.385* -0.648
Suggest -0.252* -0.220 -0.310* -0.276 -0.256 -0.529

Table 3: Results of multiple regression analyses predicting game score (robust Z-score) from the selected seven
dialogue act frequencies. Standardized coefficients (β) are shown for the entire dataset (ALL), subgroups based on
proficiency difference (Low-Diff, Med-Diff, High-Diff) and further subdivision of Low-Diff (Low-Diff-L, Low-
Diff-H. * p < 0.05 (Benjamini-Hochberg corrected).

significantly associated with lower scores. This
pattern suggest that frequent apologies, likely in-
dicating the occurrence of errors or inefficiencies
during the task, are particularly detrimental to per-
formance when partners have similar skill levels,
perhaps because neither partner can easily com-
pensate for the mistakes. The results for the Med-
Diff group roughly mirrored those of the overall
dataset (ALL), with Inform, Agreement, and Sug-
gest showing significant associations. Notably, in
the High-Diff group, pairs with a large proficiency
difference, Request emerged as significant posi-
tive predictor of performance, a pattern not ob-
served in the other groups. This suggests that in
high-difference pairings, explicit requests facili-
tate better coordination and outcomes. Agreement
also showed a positive association in this group.

4.2.3 Analysis within Low-Difference Pairs

Recognizing that the Low-Diff group could com-
prise pairs where both partners have high pro-
ficiency or both have low proficiency, we fur-
ther divided this group based on the median of
their combined proficiency scores. This resulted
in a high-proficiency pair subgroup (Low-Diff-H;
n=23) and a low-proficiency pair subgroup (Low-
Diff-L; n=17). The results are also shown in Ta-
ble 3. In the Low-Diff-H (High-Proficiency Pairs)
subgroup, where both partners were highly pro-
ficient, the overall trend was similar to the ALL
group, but Inform was no longer a significant
predictor. This might imply that highly skilled
players can effectively infer necessary informa-
tion from the visual game state, reducing the
relative importance of explicit information shar-
ing through dialogue. Furthermore, and perhaps
counter-intuitively, a higher frequency of Request
acts was significantly associated with lower scores
in this high-proficiency pair group. It might in-
dicate that frequent explicit instructions between

DA Med-Diff High-Diff
Informhigh 0.125+ 0.017
Informlow 0.106+ 0.058∗

Requesthigh -0.029 0.132+

Requestlow 0.069 0.193+

Agreementhigh 0.206+ 0.356+

Agreementlow 0.009 0.413+

Suggesthigh -0.301+ -0.161
Suggestlow -0.104 -0.396

Table 4: Results of multiple regression analysis pre-
dicting game score (robust Z-score) using dialogue act
frequencies separated by high-proficiency (Taghigh)
and low-proficiency (Taglow) speakers in Med-Diff
and High-Diff pairs. * p < 0.05, + p < 0.10 (Benjamini-
Hochberg corrected).

experts can lead to inefficiencies, potentially dis-
rupting autonomous workflows or causing micro-
management overhead. This suggests that for
expert-expert collaboration in this environment,
excessive reliance on explicit requests may be less
effective than coordination based on mutual an-
ticipation and minimal, targeted communication.
However, Thanking and Agreement remained sig-
nificant positive predictors, suggesting that fos-
tering a cooperative atmosphere is still beneficial
even among experts. Interestingly, in the Low-
Diff-L (Low-Proficiency Pairs) subgroup, no di-
alogue act tags showed a significant association
with the score. This could suggest that for pairs
where both partners lack proficiency, variations in
communication strategies have less impact on the
outcome compared to the overriding factor of their
fundamental skill limitations.

4.2.4 Speaker Proficiency within Pairs
To further analyze speaker-specific dynamics in
the Med-Diff and High-Diff groups, we conducted
additional set of multiple regression analyses. An-
alyzing all original predictor tags separately for
each speaker (high vs. low proficiency) would
result in a large number of variables (16 predic-
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tors) relative to the sample size in these subgroups
(n=35 and n=40, respectively), potentially lead-
ing to model instability and unreliable estimates.
Therefore, to maintain model robustness while fo-
cusing on key communicative functions, we se-
lected four core dialogue acts based on our pre-
ceding analyses and their fundamental roles in co-
ordination: Inform (for establishing shared situa-
tional awareness), Suggest and Request (for plan-
ning and directing actions), and Agreement (for
confirming mutual understanding and facilitating
smooth interaction). The results of this speaker-
specific analysis are presented in Table 4.

For the Med-Diff group, the results suggest
potential trends, although no predictors reached
the conventional p < 0.05 significance level af-
ter correction (Table 4). Specifically, Inform acts
tended to be positively associated with the score
when initiated by either the high-proficiency part-
ner (Informhigh) or the low-proficiency partner
(Informlow), suggesting that information sharing
remains beneficial regardless of who provides it.
Similarly, Agreement expressed by the higher-
proficiency partner also showed a positive trend.
Conversely, Suggest acts initiated by the higher-
proficiency partner tended to be negatively associ-
ated with the score, suggesting that excessive top-
down suggestions might disrupt collaboration in
these moderately heterogeneous pairs.

Turning to the High-Diff group, the analy-
sis reveals that Inform acts initiated by the low-
proficiency partner were significantly positively
associated with performance. This suggests that
when less experienced partners actively share in-
formation about their status or actions, it sig-
nificantly aids coordination. Furthermore, there
were positive trends for Request acts initiated by
both the high-proficiency partner and the low-
proficiency partner. This suggests that explicit
requests or instructions, regardless of who issues
them, facilitate coordination when the skill gap is
large. Similarly, Agreement initiated by both part-
ners also tended to be beneficial.

5 Design Guidelines for Collaborative
Dialogue Systems

Based on the analyses presented in this paper, we
propose the following design guidelines for dia-
logue systems intended to engage in collaborative
tasks with human users.

First, a fundamental strategy for the system

should involve proactive communication regard-
ing its own status and intentions (Inform), cou-
pled with frequent expressions of Agreement and
Thanking in response to the user’s utterances and
actions. Our analysis indicated that these dialogue
acts are generally associated with higher task per-
formance (as discussed in Section 4.2.1). Further-
more, given that effective Role Division was found
to be strongly correlated with task success (Sec-
tion 4.1), proactive information sharing is crucial
for establishing and maintaining appropriate roles
between the user and the system.

Second, it is critical for the system to dynami-
cally assess or infer the proficiency difference be-
tween itself and the human user during the col-
laborative process and adapt its interaction strat-
egy accordingly. If the system possesses high
task proficiency and the perceived proficiency dif-
ference with the user is relatively small (Low-
Diff or Med-Diff scenarios), continuing with the
aforementioned strategy of proactive information
sharing, agreement, and thanking appears effec-
tive (Section 4.2.1, 4.2.2 and 4.2.3). However,
when the system is highly proficient but perceives
a large proficiency gap with the user (High-Diff
scenario), the system should adopt a more di-
rective role, actively issuing Requests or instruc-
tions to guide the user and take leadership in the
task (Section 4.2.4). Conversely, if the system
has low proficiency while the user is highly pro-
ficient (another instance of a High-Diff scenario,
but with roles reversed), the system should be de-
signed to encourage or solicit guidance and in-
structions from the user, effectively positioning
the user as the leader (Section 4.2.4). Finally, in
situations where both the system and the user have
low proficiency (Low-Diff-L scenario), our find-
ings suggest that communication strategies alone
may be insufficient to ensure efficient collabora-
tion (Section 4.2.3). In such cases, the primary
focus should be on improving the system’s funda-
mental task execution capabilities before sophis-
ticated adaptive communication strategies can be-
come truly effective.

6 Conclusion

This paper presented an analysis of a novel
human-human interaction dataset from a real-time
collaborative game, investigating how communi-
cation patterns and subjective experiences corre-
late with task success, particularly considering
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partner proficiency differences. Our findings re-
vealed that while some communication acts con-
sistently aid collaboration, the effectiveness of
others depends heavily on the partners’ relative
skill levels. Based on these insights, we proposed
design guidelines for adaptive collaborative dia-
logue systems.
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A Cooking Game Environment

(a) Practice (b) Proficiency measurement (c) Standard

(d) Concave (e) Partition (f) Expanded Concave

Figure 6: The Designed maps in the Overcooked environment.

Figure 6a shows the map used for the initial practice session, while Figure 6b depicts the map used
for proficiency measurement. Both are designed with a simple structure suitable for single-player task
execution and feature longer time limits for order completion compared to the collaborative maps, facil-
itating familiarization and assessment, respectively.

Figures 6c, 6d, 6e, and 6f show the four collaborative maps used for data collection, which participants
played sequentially in this order. Figure 6c represents a standard layout for collaborative play, featuring
a spatially balanced arrangement of cooking stations. This design allows for relatively easy movement to
different stations and facilitates flexible mutual assistance between players based on the evolving situa-
tion. Figure 6d is designed to encourage clearer role division through its structure and station placement.
Movement between the left and right areas requires passing through a central passage, promoting a style
where each player tends to focus on specific roles while coordinating their efforts. Figure 6e features
the most rigid role division structure among the maps used, completely separating the two players via a
central partition. Completing orders necessitates strong interdependence and relies heavily on effective
communication for coordinating actions. Figure 6f shares a similar structure to Figure 6d but introduces
greater complexity by incorporating two cooking methods and the maximum of four ingredient types,
requiring players to handle more intricate orders. Furthermore, while the player on the right side can
efficiently perform tasks from retrieving vegetables to chopping, the diversity of orders creates an asym-
metric workload distribution. Consequently, the player on the left, who typically has a lighter task load,
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Figure 7: Score Distribution for Four Maps.

often assumes a crucial role in planning and leading the overall cooking process.
Figure 7 displays the distribution of game scores for each collaborative map. On the Standard map,

scores tend to be skewed towards the lower end. This is likely because it was the first collaborative
map participants played, making it challenging for them to establish efficient coordination patterns im-
mediately. In contrast, the Concave and Partition maps show scores distributed across a wider range,
suggesting that performance on these maps is more sensitive to the success or failure of the pair’s co-
ordination and chosen strategy. The Expand Concave map also shows a tendency towards lower scores,
although less pronounced than the Standard map. This is presumably because the map’s structure and
the complexity of orders hinder efficient collaboration, making it difficult to achieve high scores.

B Dialogue Act

A list and description of the dialogue act (DA) tags used in this study are presented in Table 5. Among
the total of 16 tag types shown in the table, Advice and Encouragement are tags specifically defined
for this research to capture nuances relevant to the collaborative task. The tags Inform, Request, Con-
firm, Agreement, Apology, Question, Suggest, Answer, Disagreement, and Other originate from the ISO
24617-2 DA standard (Bunt et al., 2017, 2020). The remaining four tags, namely Self-talk, Accept,
Thanking, and Backchannel, are derived from the SwDA scheme (Jurafsky et al., 1997; Shriberg et al.,
1998; Stolcke et al., 2000). The descriptions and definitions for each tag, also provided in Table 5, were
developed by referencing existing literature and adapting them to the specific context and requirements
of our collaborative cooking game environment.
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Tag Description

Inform Utterances sharing task-related facts, states, or actions with the partner.
Self-talk Utterances in which the speaker verbalises their own thoughts or feelings; no call for action or informa-

tion directed to the partner.
Request Utterances asking the partner to perform some action, expressed imperatively or politely.
Accept Utterances that accept or agree to a proposal, request, or confirmation from the partner.
Thanking Utterances expressing gratitude to the partner.
Backchannel Short reactive tokens showing attention or understanding without adding new content (e.g., “uh-huh”,

“okay”).
Confirm Utterances checking the correctness of information or mutual understanding (e.g., “Is this okay?”).
Agreement Utterances explicitly expressing agreement or alignment with the partner’s opinion.
Apology Utterances in which the speaker apologises for their own behaviour or the situation.
Question Utterances seeking information or opinion from the partner, excluding confirmation or suggestion ques-

tions.
Suggest Utterances presenting a new idea or course of action for consideration.
Answer Utterances that respond appropriately to the immediately preceding question, including replies to confir-

mation or suggestion questions.
Advice Utterances pointing out improvements or giving guidance to the partner (e.g., “You should…”).
Disagreement Utterances expressing a negative stance toward the partner’s statement, opinion, or question (e.g., “No,

that’s wrong”).
Encouragement Utterances that cheer up or motivate the partner (e.g., “You can do it!”).
Other Utterances that do not fit any category above, have unclear intention, or comprise greetings or fillers.

Table 5: Dialogue act tags used in this study.

C Prompt for Dialogue Act Annotation

The following describes the prompt provided to the language model (Gemini 2.5 Pro Preview 03-25) for
automatic dialogue act annotation. The prompt consisted of several sections: a task description, a list
of dialogue act tags with definitions and priority rules, specific annotation guidelines, a summary of the
game rules, descriptions of the input log format and the desired output format, and finally the log data
itself.

Prompt for Dialogue Act Annotation

# Task Description
You are given mixed logs of in-game actions and voice chat produced by two players collaborating in an Overcooked-
inspired cooking game. For every utterance, assign exactly one dialogue-act tag from the list below. If multiple tags seem
plausible, choose the single most appropriate one.

# Dialogue Act Tag Set
- Inform: Utterances sharing task-related facts, states, or actions with the partner.
... (same as Table 5. omitted)
- Other: Utterances that do not fit any category above, have unclear intention, or comprise greetings or fillers.

# Game Rules
- The goal is to prepare specified dishes by chopping, mixing, cooking ingredients, plating them, and placing them at the
serving station within the time limit.
- Three orders are always visible on screen, each with its own time limit.
- A player can move up, down, left, or right and interact with an adjacent object.
- Ingredients are lettuce, bell pepper, tomato, and onion.
- Interacting with an ingredient crate produces that ingredient.
- Interacting with a cutting board while holding an ingredient cuts it.
- Two different cut ingredients placed at the same location can be mixed together (three or more can also be mixed).
- Cut ingredients can be cooked in a frying pan or boiled in a pot.
- Over-cooking or over-boiling causes a fire.
- Fires must be extinguished with a fire extinguisher.
- After a fire is out, the burnt dish must be discarded in the trash.
- Interacting with the trash while holding an ingredient, cut ingredient, or dish discards it.
- Interacting with the plate rack produces a plate.
- A cooked dish can be plated by interacting with the pan or pot while holding a plate.
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- A plated dish placed at the serving station yields score.
- While holding a plate, a player can still pick up ingredients or cut ingredients.
- Any portable item can be placed on an empty counter by interacting with it.

# Input format
The log is a JSON file in which game-action entries and speech-action entries are interleaved in chronological order.
Each entry has the following common keys:
- id: unique event identifier (integer)
- time: timestamp in seconds
- player_side: initial spawn side of the player
- player_id: ID of the focal player (logs include only this player)
- action_type: Type of event (’game’ or ’utterance’)

If action_type is ’game’, the following keys are included:
- action: Specific type of game action (e.g., ’Move’, ’Chop_FreshTomato ’)
- position: Coordinates where the action occurred ([x, y]). For ’Move’, it’s the position after moving; otherwise, it’s the
target location of the action

If action_type is ’utterance’, the following keys are included:
- utterance: The content of the utterance.
- end_time: Time the utterance ended (in seconds).

# Output format
- Estimate the tag for all entries where "action_type" is "utterance".
- The final output should be in JSON format as follows:

[
{
“ id": "int", // Same id as the target entry
"tag": "str" // The estimated tag

},
...
]

# Now please annotate the following log:
{GAME_AND_DIALOGUE_LOG}

D Dialogue Example

Figure 8 presents a dialogue excerpt from a High-Difference (High-Diff) pair, consisting of one high-
proficiency (expert) player and one low-proficiency (beginner) player. Figure 9 shows a dialogue ex-
ample from a Low-Difference High-Proficiency (Low-Diff-H) pair, where both participants had high
proficiency scores. In both figures, each utterance is shown alongside its assigned dialogue act tag based
on our annotation process. To aid understanding of the interaction flow, accompanying descriptions of
relevant game actions and illustrations are also included.

The dialogue example in Figure 8 is characterized by a dynamic where the high-proficiency player
primarily issues Request acts, guiding the interaction, while the low-proficiency player takes a more
responsive role. In contrast, the example in Figure 9 demonstrates how high-proficiency partners effec-
tively coordinate through more abstract Inform acts, accurately inferring each other’s intentions from
these cues and smoothly transitioning to subsequent actions.
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Figure 8: Dialogue examples between experts and beginners (collected in Japanese and translated to English by
authors) during collaborative work.
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Figure 9: Dialogue examples between experts (collected in Japanese and translated to English by authors) during
collaborative work.


