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Abstract

Dialogue agents that support human users in
solving complex tasks have received much at-
tention recently. Many such tasks are NP-hard
optimization problems that require careful col-
laborative exploration of the solution space. We
introduce a novel dialogue game in which the
agents collaboratively solve a two-player Trav-
eling Salesman problem, along with an agent
that combines LLM prompting with symbolic
mechanisms for memory, state tracking and
problem-solving. Our best agent solves 45% of
games optimally in self-play. It also demon-
strates an ability to collaborate successfully
with human users and generalize to unfamil-
iar graphs.

1 Introduction

Humans frequently face the challenge of solving
hard combinatorial problems in their daily lives,
from planning to scheduling to resource allocation,
and they often struggle to solve these problems
well (Hidalgo-Herrero et al., 2013). LLMs are
surprisingly good at solving these problems (Fan
et al., 2024), but only when the human user has full
knowledge of the problem’s contributing variables
and constraints, and can spell it out in detail. One
of the great promises of LLMs is that they can help
humans solve such problems collaboratively (Gun-
dawar et al., 2024), through a dialogue in which
the human and the system take turns exploring the
problem and proposing increasingly complete and
correct solutions.

AI agents for collaborative problem-solving
must have a number of fundamental skills to be
effective. In addition to the ability to solve NP-
hard problems, they also need to perform conversa-
tional grounding (tracking the details of the prob-
lem and the parts of the solution that have been
agreed upon), remember what their partner wants
and knows, and negotiate and revise partial solu-
tions. All of these are established problems in the

Figure 1: The two players’ (A, B) perspectives of
the same move, in their respective dimensions (light,
ghost). Solid green lines represent the path already
taken, whereas the dashed lines represent each player’s
local optimal next move - for Player A, it’s the Garden,
and for Player B it’s the playroom.

dialogue literature, and it is not obvious that LLMs
will solve them easily.

In this paper, we make two contributions to
the development of collaborative agents for solv-
ing complex problems.1 First, we introduce
TRAVELING ADVENTURERS, a game in which two
agents collaboratively solve a Traveling Salesman
problem. This game serves as a testbed for col-
laborative problem-solving, as each agent only has
partial information about the problem initially and
the agents must communicate and collaborate in or-

1Our code and data are available at
https://github.com/coli-saar/collaborative-problem-solving.
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der to negotiate an optimal solution. Furthermore,
because it builds on an NP-hard optimization prob-
lem, TRAVELING ADVENTURERS is difficult enough
that humans could not immediately find optimal
solutions even with access to their partner’s knowl-
edge, necessitating the incremental construction of
a solution that we expect in a collaborative problem-
solving dialogue.

Second, we present an artificial agent that per-
forms well on playing TRAVELING ADVENTURERS.
We find that a purely LLM-based baseline struggles
with tracking its partner’s knowledge and conversa-
tional grounding; it is decisively outperformed by a
neurosymbolic agent which combines the LLM
with symbolic components for these skills and
an exact symbolic optimizer. The neurosymbolic
agent solves 98% of its games correctly and 45%
optimally in self-play, and still achieves a high opti-
mality score in 32% of games with human partners.
We conclude with a discussion of conversational
skills that would be required to push the optimality
rate even higher.

2 Background

In order to facilitate collaboration, interlocutors
must engage in dialogue so as to ensure a shared set
of intentions (Dafoe et al., 2021). Collaboration in
dialogue can take the form of a negotiation, carried
out through a set of dialogue acts such as present-
ing, accepting, or rejecting a proposal (Georgila
and Traum, 2011). A collaborative agent must suc-
cessfully process and produce such acts, at least
implicitly.

Task-oriented collaborative dialogue is primarily
studied through collaborative games which foster
negotiation by incentivizing goal-driven conversa-
tion (Schlangen, 2019). This often includes simple
problem-solving tasks (Zarrieß et al., 2016; Lewis
et al., 2017; Kim et al., 2019; Jeknic et al., 2024).
These tasks stand in contrast to NP-hard optimiza-
tion problems, which ensure that no player can
easily come to an optimal solution alone, therefore
prompting negotiation and collaboration.

Examples of more complex tasks include
TRAINS (Allen et al., 1995) and Overcooked (Car-
roll et al., 2020; Ghost Town Games, 2016). The
former involves collaboration between a human
manager and an artificial assistant to regulate a
railway and satisfy constraints, whereas in the lat-
ter, players must coordinate various steps of the
cooking process in order to make dishes. We of-

fer an environment of high complexity in terms of
problem-solving and negotiation that is minimal
enough to be addressed by prompting and crowd-
sourcing.

LLMs have shown promising results and further
potential on very complex tasks (see Cheng et al.
(2024); Mialon et al. (2023); Hartmann and Koller
(2024) for an overview). However, previous work
has shown that even one of the most advanced mod-
els (at the time, GPT-4) severely underperforms hu-
mans on strategic thinking tasks (Zhou et al., 2024).
Similarly, when dealing with complex tasks, hu-
man input can be beneficial for agent performance
and compensate for certain model-specific failures
(Lin et al., 2024). Finally, most previous work in-
vestigating LLMs and NP-hard problems is focused
on single-agent optimization (Duchnowski et al.,
2025; Ramamonjison et al., 2023; Tang et al., 2025;
Khan and Hamad, 2024).

3 The Game

We present TRAVELING ADVENTURERS, a two-
player game environment for collecting task-
oriented collaborative dialogue. Players A and B
observe a fully connected, undirected graph G: the
nodes (V ) and edges (E) are identical for both play-
ers, whereas the weights wA, wB are unique and
only known to the respective player. The goal is for
the players to agree on a single, identical path that
visits all nodes exactly once and returns to the start-
ing node while maximizing the sum of A’s and B’s
weights along the way. The players communicate
exclusively through written text and have access to
the entire chat history throughout the game.

Story. The players are told that an evil wizard
imprisoned them in two parallel dimensions of the
same house: the light and ghost dimensions (see
Fig. 1 for illustration). They observe the same
layout, where each room is connected to all the
others via hallways. In order to break the curse,
the players must perform a ritual: they must visit
each room together and return to the starting point.
Moreover, the players get to keep the loot (light
and ghost coins) that they jointly collect as they
traverse the hallways between the rooms.

Features. The game mechanics are based on a
classic NP-hard optimization problem, the Trav-
eling Salesman Problem (TSP), which we extend
to two players and “dress up” (Duchnowski et al.,
2025) as a coin-collecting game. In relation to
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I can get 4 coins if we go to the kitchen. How about the bathroom instead,
how many coins can you get there? I get 6.

From the living room, my best move would be to go to the kitchen for 6
coins. What do you think?

The user suggests going to the kitchen first. My best path from the living
room is to the  bathroom (6 coins). I can get 4 coins to the kitchen.

I do not know how many coins the user can collect from the living room to the
bathroom.

Thought-DRAFT (B)

Thought-MISSING (B)

agree-outer(["L", "K"]), inform("coins from L to K, coins from L to B"),
ask("coins from L to B")

Actions (B)

Message (B)

Message (A)

Figure 2: Player B’s internal reasoning process (green
dashed boxes) and output message, given Player A’s
message (purple box). Player B has the structure of the
Baseline agent.

the TSP, the rooms represent cities and the coins
distances (Fig. 1), with the coin maximization
analogous to distance minimization. The curse-
breaking ritual follows the rules of the TSP, and
the coin reward in the end measures the overall op-
timality of the selected path. Because TRAVELING
ADVENTURERS inherits the NP-hardness of TSP, the
optimal path for a sufficiently large graph will
not be immediately obvious to humans even if
they have perfect information about both players’
edge weights. We therefore expect that TRAVELING
ADVENTURERS promotes dynamic negotiations in
which the agents propose subpaths and revise their
proposals as they discover more optimal alterna-
tives.

The game is symmetric, as both players are given
the same amount and type of information: their
own edge weights are fully known, and the other
agent’s edge weights are initially unknown. This
means that no player can solve the task optimally by
themselves, which generates a need for negotiation
about the optimal path.

4 Game-Playing Agents

We introduce a series of agents for playing
TRAVELING ADVENTURERS. We start with a simple
baseline agent which performs a variant of few-
shot chain-of-thought (CoT) reasoning (Wei et al.,
2022) and then extend it with symbolic modules
for partner coin tracking, state tracking, and prob-
lem solving. We evaluate the agents on self-play
(Section 5) and on gameplay with human partners
(Section 6).

Action Description
suggest(x) Agent suggests x
agree-inner(x) Agent agrees with own suggestion x
agree-outer(x) Agent agrees with other agent’s sug-

gestion x
reject(x) Agent rejects suggestion x

ask(y) Ask other agent the questions y
inform(y) Tell other agent the information (y)
visit(v) Both agents agree to visit node v
solve(x) Thought-DRAFT produced a suc-

cessful solution (only Baseline and
Coin-Tracking agents)

end(x) The agents are ready to submit a so-
lution (x = final path)

Table 1: The agents’ action space. x denotes a list of
nodes, v denotes a single node, and y denotes a list of
strings in communicative actions.

4.1 The Agent Interface and Actions

In each turn of the game, the agent receives a
natural-language message from the other agent and
generates a natural-language response as output to
be sent back to the other agent (Fig. 2). Each vari-
ant of the agent maintains some internal symbolic
state (see Fig. 3), whose contents are added to an
LLM prompt along with the input message.

Before generating the output message, the LLM
in each agent may generate a sequence of actions
from a fixed list of action types (see Table 1), as
well as free-form thoughts. The actions fall into
three broad categories: negotiation, conversation,
and state update actions. Note that the actions and
thoughts are part of an agent’s internal reasoning
process and are not shared with the other agent;
their primary role is for the LLM to condition the
output message on them.

The negotiation actions represent collaborative
dialogue acts: suggest, agree, and reject. An
agent chooses to propose a subpath through the
suggest action; the other two represent the accep-
tance and refusal of such a proposal. We distin-
guish between inner agreement (of an agent with
its own suggestion) and outer agreement (with the
other agent’s suggestion); this allows us to track
whether a suggestion has been accepted by both
agents. We do not make such a distinction for rejec-
tion, since both parties need to agree on a proposal
to make it valid, whereas a single rejection invali-
dates it. The LLM is instructed through its prompt
to always generate an agree-inner action when it
generates a suggest action.

The conversation actions represent dialogue acts
that facilitate the exchange of information between
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Agent’s Coins ✓ ✓ ✓ ✓
Partner’s Coins ✓ ✓ ✓
Action History ✓ ✓

Visited ✓ ✓
Remaining ✓ ✓

IBP ✓

[["L", "E", 6],
 ["L", "B", 4],
 ["L", "K", 2], ... ]

Agent's Coins

["L", "B", "K"]

Visited

["L", "B", "K", "A", "E",
"C", "L"]

Intermediate Best Path (IBP)

[suggest(["L", "C"]), 
 agree-inner(["L", "C"]),
 ask("coin distribution
      between L and C")]

Action History

[["L", "B", 5],
 ["B", "K", 3],
 ["B", "A", 6], ... ]

Partner's Coins

["L", "E", "A", "C"]

Remaining

Figure 3: The table on the left shows the input structure for each version of the agent, with the rows representing
the components and the columns showing agent versions. The figure on the right shows a real example of each
component, where the letters correspond to graph nodes, i.e., rooms, while the numbers show the weights of the
edges between them, i.e., coins.

the agents: inform and ask. Generating an inform
action will typically cause the LLM to generate
a statement encoding a piece of information as
part of the output message, whereas ask generates
questions. In contrast to the negotiation actions,
the arguments of conversation actions are strings
that will be spelled out as proper English by the
LLM (see e.g. Fig. 2).

Finally, the state update actions directly affect
and modify the agent’s internal symbolic state. We
will discuss these as we introduce the state repre-
sentations of the individual agents below.

4.2 Baseline Agent

The Baseline agent prompts an LLM to generate ac-
tions, thoughts, and output messages using a mod-
ified ReACT prompting strategy (Yao et al., 2023).
We present the LLM with a description of the task
and environment, followed by a complete example
dialogue between two players solving the task.

The agent prompts the LLM to generate thoughts
of one of two possible types. In a Thought-DRAFT,
it attempts to generate a solution to the game
by proposing a full or partial path. The agent
then either confirms the feasibility of this solu-
tion through the solve action explained below, or
it generates a Thought-MISSING, which specifies
that the agent needs more information (e.g., the
other agent’s coins) to determine a good path. A
typical Thought-MISSING thought will then trigger
an ask action to gather this information.

The LLM can also generate actions in addition
to these thoughts. These include all the negotiation

and conversation actions explained above. Fur-
thermore, the end action finishes the game and
submits a path; with this action, the agent claims
that it has found the optimal path and agreed on
it with the other agent. Finally, the solve action
indicates that the agent considers the solution gen-
erated in Thought-DRAFT as successful, and that a
Thought-MISSING is not needed.

A key difference between thoughts and actions
is that the Baseline agent stores all generated ac-
tions in symbolic memory and includes this action
history in the prompt in the next turn. The only
symbolic information the Baseline agent uses in
addition to the action history is a representation of
its own world state (Agent’s Coins in Fig. 3), i.e.,
the graph and the agent’s own edge weights.

4.3 Coin-Tracking Agent

We observe several kinds of mistakes in the Base-
line agent (see examples in Appendix D). The agent
often forgets the information its partner (or it)
has already shared. For example, in the agent’s
Thought-DRAFT, the agent might claim to have al-
ready shared its coin distribution when in fact it
has not.

In order to improve the agent’s ability to keep
track of its partner’s knowledge about their world,
we extend the Baseline agent with additional sym-
bolic memory that captures what the agent knows
about the other agent’s edge weights (Partner’s
Coins). The Partner’s Coins structure gets up-
dated progressively throughout the game after each
message the partner sends. The necessary updates



784

are extracted by an LLM-based module tasked
with isolating the new information about the part-
ner’s edge weights. To do this, it processes each
message with the additional context of the current
Partner’s Coins. To further constrain the mod-
ule and aid with referential expression parsing, we
include information about the world that the partner
is in (light/ghost). This way, if a message contains
claims about both the “ghost” and “light” coins,
the module can disentangle it and identify which
part of the utterance is relevant for the partner. The
module employs CoT reasoning, first generating
a single thought, followed by the new Partner’s
Coins information. The rest of the agent is iden-
tical to the Baseline (see second column in Fig.
3).

4.4 State-Tracking Agent
A frequent mistake that the Coin-Tracking agent
makes is forgetting which rooms have yet to be
visited or can be visited from a given node, result-
ing in incomplete paths. To address the inability
to construct a path including all nodes, we intro-
duce an agent augmented with state-tracking com-
ponents: two dynamically updated structures keep-
ing track of the agreed upon nodes (Visited) and
the pool of remaining nodes (Remaining).

We replace the action history with the two state-
tracking modules, which are updated whenever
a visit action is generated (adding the agreed-
upon node to Visited, and removing it from
Remaining). This is in contrast to the previous
two agents, where we preserve the actions in the
memory by repeating a progressively longer list of
generated actions. By executing the visit action,
we reduce the input size, while still preserving the
key negotiation actions in the memory. This addi-
tion enables us to augment the module for updating
the Partner’s Coins with the agent’s last agreed-
upon node, i.e., the last element in Visited, in
order to aid the module in co-reference resolution.

Additionally, we observe that the Coin-Tracking
agent rarely uses the Thought-MISSING, instead
including its presumed contents at the end of the
Thought-DRAFT. Thus, we collapse the thoughts
(Thought-MISSING and Thought-DRAFT) into a
single Thought and remove the solve action. The
rest of the output format remains the same.

4.5 Problem-Solving Agent
The State-Tracking agent is quite competent at gen-
erating correct paths, but it still struggles to gen-

erate optimal paths. We therefore define a final
agent which uses a symbolic linear program solver
(Gurobi Optimization, LLC, 2024) to compute op-
timal paths, rather than having the LLM compute
them itself.

At the start of each turn, the Problem-Solving
agent converts the agent’s knowledge into an Inte-
ger Linear Program (ILP) for the Traveling Sales-
man Problem. The ILP further enforces that the
optimal path must start with the Visited path on
which the two agents have agreed so far. Un-
known edge weights are assigned a value of zero.
The agent then calls the Gurobi solver to com-
pute the optimal path that is consistent with this
input. We call this optimal path the “intermedi-
ate best path” (IBP), emphasizing that the optimal
path may change in response to the Visited list
and the agent’s knowledge about the partner’s edge
weights.

The agent then inserts the IBP into the prompt for
the LLM call generating the thoughts and actions.
Note that the observation that symbolic solvers out-
perform LLMs in solving NP-hard optimization
problems is not new (Duchnowski et al., 2025); in
contrast to this related work, however, the linear
program in our agent is generated programmati-
cally from the Visited list and the edge weights,
rather than by an LLM.

5 Agent-Agent self-play

5.1 Setup

In order to assess each agent from Section 4, we
test pairs of agents on TRAVELING ADVENTURERS in
self-play. We use GPT-4o (gpt-4o-2024-08-06)
as the LLM base of the agents. We evaluate agents
using four random seeds on a batch of 25 games,
producing 100 games per agent. Both agents in a
pair instantiate the same agent structure. We refer
to the agents as BOT and USER, and set the USER
agent to always make the first move. Addition-
ally, the BOT is always in the ghost world, and the
USER is always in the light world. The agents take
turns sending messages until the game ends with a
solution or a timeout.

We manually created six 6-node graph pairs (see
Appendix F for details). In each game, we ran-
domly pick one of these graph pairs and assign
them to the USER and BOT. The rooms included in
the self-play setup are: a living room (abbreviation:
L), a bathroom (B), a kitchen (K), an empty room
(E), and a children’s room (C). The first room is
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Agent Identical Correct Optimal
Baseline 99 71 28
Coin-Tracking 100 65 25
State-Tracking 99 86 17
Problem-Solving 98 98 45

Table 2: The results of the self-play experiments per
agent. The rows represent the agents described in Sec-
tion 4. The columns represent binary metrics described
in Section 5.1. The figures illustrate the number of
games in which each binary metric occurs, and are ex-
pressed in percent points, representing the mean across
four seeds.

always the living room.
The agents’ goal is to agree on and submit a

path that visits each room once and returns to the
start. If the agents fail to converge on a solution
within 15 turns each, the game is terminated and
marked as a timeout. Once a path is submitted
by both agents, we evaluate it in terms of three
binary metrics: whether the agents submitted an
Identical solution, whether the solution is Correct,
i.e., whether it includes each room once and returns
to the living room, and whether it is Optimal. Note
that Identical← Correct← Optimal.

5.2 Results
Overview Table 2 breaks down the results by
agent. Across all setups, most games ended with
agents successfully producing identical solutions.
Beyond that, the Problem-Solving agent decisively
outperforms all other agents on correctness and op-
timality. Moreover, the Coin-Tracking agent trails
the Baseline in both correctness and optimality.
The State-Tracking agent achieves a high correct-
ness score, but a much lower optimality score. This
illustrates the distinct impacts of certain modules
on scores, and trade-offs between the metrics, par-
ticularly optimality in favor of correctness.

Despite the constrained action space and limited
number of possible moves at each node, the results
suggest that the game environment creates a rea-
sonably challenging task for the agent, even with
the support of a symbolic problem-solving module.

Module impacts on scores We interpret the
Coin-Tracking agent’s dip in correctness and op-
timality relative to the Baseline as a result of the
Partner’s Coins module improving capacities
that didn’t have a direct effect on the two metrics.

The State-Tracking agent stores consistent par-
tial solutions, which has a positive effect on correct-
ness, but a negative effect on the optimality. This

Figure 4: The abridged co-occurrence matrix illustrating
the conditional probability of the actions on the y-axis
co-occurring with actions on the x-axis (P (x|y)). The
full matrix can be found in Appendix G.

is in line with the expected functions of the added
symbolic modules (Visited and Remaining): they
are designed to aid the agent in keeping track of
the selected subpath and nodes that remain to be
selected. However, the modules do not contribute
to forming an optimal path.

Lastly, we observe that the agent equipped with
a symbolic problem-solving module is our best per-
forming and most balanced version. The solver
helps steer the model in the right direction (highest
optimality and correctness) without negatively im-
pacting conversation management and efficiency.

Storing actions The results further suggest that
the way in which actions are stored in the agent’s
memory impacts correctness. Storing only the
currently relevant actions (State-Tracking and
Problem-Solving) improves the correctness, com-
pared to simply including a list containing all gen-
erated actions up to the current turn without any
pruning (Baseline and Coin-Tracking).

5.3 Collaboration analysis
To further assess how the agents collaborate, we
conduct qualitative analyses by calculating co-
occurrence probabilities across the defined action
space. This allows us to get a better understand-
ing of the contributing factors to the results in Ta-
ble 2. Since these findings are consistent across
agents and agents (BOT and USER), we focus on the
Problem-Solving USER agent as an example.

Node-by-node strategy is preferred to full path
generation Fig. 4 shows an abridged co-
occurrence matrix of actions being generated in the
same turn. Note that the suggest action typically
occurs once per conversation turn, as indicated by
a low probability of suggest occurring with itself
(0.038). This would imply that the node-by-node
approach is the favored strategy. The agents are not
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Agent Setup Node-by-node Full path
Baseline SP 95.6 0.3
Coin-Tracking SP 96.0 0.6
State-tracking SP 99.6 0.0
Problem-solving SP 96.2 0.3

Baseline HA 65.5 23.1
Problem-solving HA 91.6 4.2

Table 3: Collaboration strategy overview by agent and
by setup (SP: BOT in self-play, HA: human-agent). The
figures illustrate the percentage of total games using the
two most prevalent strategies: Node-by-node and Full
path. Full tables can be found in Appendix C.

explicitly instructed to generate actions in this man-
ner, though this is the strategy used in the prompt
example (Appendix E).

This observation is further supported by the
length of argument passed to the suggest action.2

Table 3 shows the percentage of total games using
the two most prevalent strategies: Node-by-node
(2 arguments) and Full path (7 arguments), fur-
ther illustrating each agent’s preference for the the
node-by-node strategy, i.e., incremental greedy ap-
proach. We find that suggestions were overwhelm-
ingly used to add only one node to the joint path,
with the next most popular uses being suggesting 2
nodes or suggesting a full path.

Rejection is followed by a counterproposal Re-
jection is another important aspect of collabora-
tion. While the agents rarely outright rejected
proposals (only 0.1% of total actions), we notice
that rejecting is typically done in tandem with a
counter-proposal (suggest and agree-inner ac-
tions, see Fig. 4). This is desirable behavior, and fu-
ture work could get the agent to reject more (where
appropriate).

6 Human-Agent Experiments

We complement the self-play evaluation from Sec-
tion 5 with an evaluation in a more natural envi-
ronment: one in which the agent plays TRAVELING
ADVENTURERS with a human. We test the Baseline
and Problem-Solving agents.

6.1 Setup

The pairs complete one round of the game with
a 6-node graph where the starting position is al-
ways fixed. The pair must communicate through a
chat box and select an identical, agreed-upon path

2For example, if an agent suggests moving from the
kitchen to the attic, the subpath will be ["K", "A"].

before clicking the submit button. If they try to
submit a solution before both agents have agreed,
the game framework will send both agents a no-
tification informing that their selected paths must
be identical. This was done to prevent participants
from cheating by submitting a random sequence
of nodes without any communication or agreement
from their partner.

We prepend this round with a 4-node graph tuto-
rial that the human player completes on their own.
This is meant to familiarize the player with the me-
chanics and goals of the game, in tandem with the
written instructions they read before accepting the
task. The weights of the graph range from 1 to 10
and sum to a preset amount (see Appendix B for
more details).

The interface for the human participants consists
of the chat box and a visual representation of the
rooms, as in Fig. 1.3 The human needs to click
on the rooms in the agreed-upon order and, once
finished, they need to click the submit button.

We collected 50 games per agent tested (100
in total) by recruiting participants through Pro-
lific (www.prolific.com), where they were paid
£12/hour and an additional £0.5 bonus for find-
ing an optimal solution. The task took on average
12 minutes to complete, and the participants were
not informed that their partner was an LLM agent.
We deployed the game using Slurk (Götze et al.,
2022), an out-of-the-box dialogue collection tool
with a robust logging schema.

In order to make the game more rewarding for
the participants, we present them with a score be-
tween 0 and 100. We use the percentile rank of the
solution as a representative proxy of the submit-
ted path’s quality in relation to all other possible
solutions. For example, a solution very good solu-
tion might be better than 98% of possible solutions,
its percentile rank is 98, and the pair would get a
score of 98. For further evaluation, we retain the
Optimality metric from Section 5.1. Because of
the changes we make to circumvent cheating, the
round can only end in a Completed submission if
both the human and agent select an identical final
path at the time of submission. For this reason, we
track the games which achieve a suboptimal, yet
high score (over 90) as an indicator of successful
collaboration. If the agents fail to reach a final
agreement or if the human player does not submit
the solution, the game framework terminates and

3For an overview of visuals, see Appendix A.
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Comp. S≥90 Opt. AMT HMT
Baseline 88 26 10 10.1 8.2
Problem-solving 76 32 20 9.4 7.8

Table 4: The results of the human-agent experiments
by agent version, using Completed, Score ≥ 90, and
Optimal metrics, as described in Section 6.1 (these
metrics are percentages of all collected games). AMT
and HMT refer to the mean number of turns per game
for the agent and human participants, respectively.

the round ends in a timeout.

6.2 Results

Overview The results can be found in Table 4.
While the number of completed games is higher
with the Baseline agent, the number of games
ending with an optimal or high score is higher
in the Problem-Solving agent. This shows the
agents’ ability to navigate and complete a complex,
symmetric collaborative task and highlights the
Problem-Solving agent’s ability to steer dialogue
and suggest optimal or near-optimal solutions.

User error causes incomplete games The ma-
jority of terminated games stem from user errors
where the participant did not click the submit but-
ton (even when a full identical path was selected)
or communicated very little with the agent. This is
a confusing outcome that should be further looked
into in future work.

Node-by-node strategy is preferred We con-
duct the analysis about path strategy as we did for
self-play. The bottom two rows of Table 3 show the
distribution of the two most dominant strategies, as
indicated by the length of argument passed to the
suggest action, illustrating the number of steps:
node-by-node (argument length 2) and full-path
(argument length 7). This matches the results in
Section 5.3. The Problem-Solving agent is more
consistent, whereas the Baseline agent shows more
variability in its approach. This can be attributed to
the Baseline agent being more susceptible to sub-
optimal suggestions, as, compared to the Problem-
Solving agent, it does not have an IBP to which it
can compare the human’s suggestion.

It takes more turns to reach a solution In con-
trast to self-play experiments, in which the in-
terlocutors consistently take relatively few turns
to reach an agreement (nt ≤ |V |), the human-
agent experiment results in a mean 10.1 turns for
the Baseline agent and 8.2 turns for the Problem-

Hey there! To start, my best path from the living room is heading to the
empty room where I can collect 6 light coins. I'll then move to the  attic
for another 6 coins. Could you let me know what your coin distribution
looks like on your end? [...]

Hi! Starting with the empty room is almost as good for me since I would 
get 5 ghost coins, however, the best starting path for me would be to go
from the living room to the children's room first, which yields me 6 ghost
coins. What do you think about that route? [...] Could you let me know
what your best option from the empty room looks like?

I see your point that starting at the children's room gives you the most coins up
front, but heading to the empty room first gives me 6 coins  while getting you 5
as well.  [...] Could we consider the path starting from the empty room (L -> E ->
A)? [...]

I understand your suggestion now! Alright, let’s go with your proposal
and start at the empty room and then head to the attic.

suggest(['L', 'E']), agree-inner(['L', 'E']), ask("coin distribution on your end"),
inform('starting path: L to E with 6 coins, then E to A')

reject(["L", "E"]), suggest(["L", "C"]), agree-inner(["L", "C"]), inform("coins
between L and C"), ask("best option based on your board?")

reject(['L', 'C']), suggest(['L', 'E', 'A']), agree-inner(['L', 'E', 'A'])

agree-outer(["L", "E"]), agree-inner(["L", "E"]), visit("E"), agree-outer(["E", "A"]),
agree-inner(["E", "A"]), visit("A") 

Message (A)

Message (A)

Message (B)

Message (B)

Actions (A)

Actions (A)

Actions (B)

Actions (B)

Figure 5: An example interaction of two Problem-
Solving agents (A, B) in self-play. The dialogue illus-
trates a proposal rejection sequence, ultimately ending
in a suggestion acceptance. We highlight the crucial
parts of the dialogue.

Solving agent. The human player turns are slightly
lower (9.4 and 7.8, respectively) due to the reac-
tive system design: the agent can take a turn if it
receives a message from the human or the game
framework.

7 Qualitative examples

We illustrate the abilities and limitations of our
agents with a few qualitative examples. Fig. 5
shows a multi-turn negotiation example from self-
play of the Problem-Solving agent, in which B
(purple) rejects A (green)’s suggested path and of-
fers its local optimal move as a counterproposal. In
the subsequent turn, A manages to persuade B to
reconsider their decision in favor of the joint opti-
mum, which B accepts. This shows that the agent
is capable of nontrivial negotiations about the path.

The most prominent remaining issue is that the
agents with symbolic elements have no backtrack-
ing ability. This is illustrated in Fig. 6. Because
of the current design of the symbolic state-tracking
structures (Visited, Remaining) and the actions
for updating them, the Problem-Solving agent (pur-
ple) cannot process the human’s (blue) attempt to
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We've already been to the playroom next, so let's proceed to
the garden from here to gather more coins. Does that sound
okay to you? What would the coin situation look like for you
between the playroom and garden, bathroom, or attic?

We have made significant progress by visiting the kitchen and
the playroom according to our best path strategy. Let's proceed
with this path by moving to the garden from the playroom. Can
you let me know the coin distribution for moving from the
playroom to the garden, bathroom, or attic?

Lets go kitchen, then attic then, its more
coins

we can reset the graph

no, this isnt the best path though

Human Agent

Figure 6: An example interaction between human (blue)
and agent (purple). The dialogue illustrates the agent’s
inability to backtrack and revise the agreed-upon path.
The agent has the structure of the Problem-Solving agent
described in Section 4.

undo some of the recent steps in the path. The
Visited data structure correctly represents a path
that was already mutually agreed upon, but agents
in an effective negotiation sometimes withdraw
prior agreements in order to explore alternatives.
Maintaining and updating an exact record of the
agreed-upon path in such a flexible way remains a
question for future research.

8 Conclusion and Future Work

We have presented TRAVELING ADVENTURERS, a
novel two-player collaborative game environment
based on the TSP, where players’ individual optima
might not be identical to one another, or the joint
optimum, encouraging negotiation and collabora-
tion. We presented an agent that plays the game
and find that combining an LLM with neurosym-
bolic modules improves the performance compared
to a Baseline in self-play. We also tested the agents
with human participants and find that, while the per-
formance is lower than in self-play, the neurosym-
bolic agent is able to foster successful cooperation
through dialogue and negotiation, outperforming
the Baseline agent.

In the future, it would be informative to see if the
agent structure from Section 4 generalizes well to
other problems, and whether it is sufficiently robust
to handle larger graphs. Another possible avenue
for future work is investigating the agents’ social
reasoning. For example, whether, when presented
with a discrepancy between own, partner’s and joint
optima, the agent sticks to its own plan and tries to
convince its partner, or vice versa.
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A Visuals

Fig. 7 illustrates the visual representations of all
rooms in the human-agent experiment setup. These
were displayed to the human player as graphs as
seen in Fig. 1. The pixel art room images were
obtained from Google Images.

Figure 7: An overview of rooms shown in the human-
agent experiment setup.

B Graph generation details

We generate the graphs in the human-agent exper-
iment setup using a process aiming to maintain
weight consistency. All weights range from 1 to
10, and we make sure the weights sum to a previ-
ously calculated total Wtotal. In order to obtain this
figure, we sum the minimum (wmin = 1) and maxi-
mum (wmax = 10) possible weight, multiply it by
the number of edges |E| and divide it by 2, which
balances the different graphs that get generated. In
the 6-node case, this amounts to a sum of 82.

To assign weights, we compute a target mean for
edge eij , µeij

. The µeij
is defined as

µeij
=

⌊
Wtotal−Wcurrent

Eremaining

⌋
,

whereby wmin ≤ µeij
≤ wmax. We also compute

a target deviation, dev = min(wmax − µeij
, µeij

−
wmin), i.e., the allowed distance from the target
weight while still staying within bounds, constrain-
ing how random the weights can be.

We use this information to compute a dynamic,
edge-specific interval, assuring that the value we

assign still leaves room to generate the remaining
weights below the allowed threshold. Lastly, we
randomly sample an integer within the dynamically
computed bounds and assign it to the given edge.

C Number of arguments to suggest
action

Tables 5 and 6 show the distribution of number of
arguments passed to the suggest action, indicating
the number of nodes in a proposed path.

D Agent errors

Fig. 8 shows each error listed in Section 4.2, as
well as an accompanying example.

E Prompts

Here we illustrate the structure of the system
prompts we use for each agent presented in Section
4. Fig. 9 shows the general outline, with the task
description, which is identical across all agents,
and placeholders for agent-specific elements de-
picting the input and output components. These
are expanded in Fig. 10 and Fig. 11, respectively.
Lastly, Fig. 12 shows the actions breakdown, in-
cluding agent-specific rules. Figures 13 and 14
depict examples used for each of the four agents.
The examples represent entire instances of conver-
sation, but have been shortened in the figures for
the purposes of clearer visual representation.

F Pre-set boards

Table 7 illustrates the six preset boards setups that
we use during self-play experiments, highlighting
the difference between weights assigned to identi-
cal edges for the two players, USER and BOT.

G Full co-occurrence matrix

Fig. 15 illustrates the complete co-occurrence ma-
trix depicting the probabilities of each generated
action along the y-axis occurring with each ac-
tion along the x-axis. Values are calculated for
the Problem-Solving USER agent.
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The user suggests going to the kitchen first, ... My two best paths from the
living room would be: ... The user's path would give us a total of 9 coins
initially, while my highest path could give us 11. However, since the user's
path aligns better with their own distribution, it makes sense to agree to
start with their path and maximize our combined coins from there.

Hey, I think starting by going to the kitchen works well for us too ...

Awesome! This path indeed optimizes our rewards. Let's confirm this:
living room -> kitchen -> children's room -> attic -> living room. I'll finalize
this path...

Hi there! From the living room, my best path in terms of collecting light
coins would be to go to the kitchen for 6 coins, followed by the
bathroom for 5 coins. How does it look on your side? ...

Sounds excellent! On my side, ... Let's finalize this path: living room ->
kitchen -> children's room -> attic -> living room. Shall we proceed with this
path to maximize our rewards?

The user agrees with the first move to the children's room (C). They
asked for more information about paths starting from the living room to
other rooms, which I've already provided in the previous message: [(["L",
"E", 5], ["L", "C", 6], ["L", "B", 3], ["L", "A", 2])].

Hi! Your suggestion to head to the children's room (C) from the living room
(L) sounds fine! ... Could you share the coin distribution for paths starting
from the living room for the other rooms?

Hey! Let's start our journey by heading to the children's room (C) from the
living room (L). This path will give me 6 light coins. How does it look in
your world?

Great! ... As mentioned earlier, here are the numbers for the light world: -
L to E: 5 coins - L to C: 6 coins - L to B: 3 coins - L to A: 2 coins ...

The user can collect more ghost coins if we head towards the empty room as
opposed to the children's room. ... Our total would then be 11 coins collected,
which is more profitable than the initial path to the children's room (only 7
coins). More information from the user about other possible pathways would
be beneficial.

Choosing the other
player's optimal path
over the joint optimal

Not visiting all rooms
(missing: empty

room)

Forgetting what
information has been

shared

Appending what
should be the

contents of
Thought-MISSING

at the end of
Thought-DRAFT

Thought-DRAFT Thought-MISSINGPlayer MessagePlayers

Figure 8: An overview of error examples found in the Baseline and Coin-Tracking agents, as described in Section 4.
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You are playing a game with a partner where you each control a
magical character. In the game, an evil wizard separated you and
your partner into two different dimensions: both of you find
yourselves in the same house, but you are in the ghost world, while
your partner is in the light world. You are able to communicate
through written text only. The scene for both of you consists of 4
rooms all connected to each other by hallways in which you will find
various amounts of coins. In order to break the curse and escape,
you and your partner have to visit each of the 4 rooms once and
return to the room where you started. For this to work, you must
travel in parallel and visit the same rooms at the same time. On
your way, you are both individually collecting coins: you collect
ghost coins, and your partner collects light coins. Because of the
wizard's curse, the ghost and light coins only show up if you're
both simultaneously going through the same hallway, so make sure to
coordinate your paths. Your score is the sum of both your and your
partner's collected coins - you must work together to maximize this.
Once you've escaped the split dimension, you and your partner will
each be rewarded the full sum of your total coin collection. Your
goals are to escape and collect as big of a reward as possible. Chat
with your partner to decide on the best way to proceed.

You will get an input containing the following:
[World-state-own] - the state of your own world, including the coin
distribution
[Observation] - the Message that the user sent.
## Other agent-specific input components description

## Agent-specific example

You will generate an output containing different kinds of thought,
actions and a message to be sent to the user. The elements of your
reply will be indicated by the flag in square brackets ([Flag]).

## Agent specific reasoning step description

## Action description

[Message] - each output must conclude with a [Message] to be shown
to the user; it should be adapted to the information generated under
[Thought]s and [Action]. 
Make sure to ALWAYS format the output in this exact way.

Figure 9: The structure of the base system prompt used for all agents described in Section 4.
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[History] - what Actions you decided to take previously. This should
inform your choice of output. 
[Observation] - the Message that the user sent.

[World-state-user] - the most recent state of the other user's world, as
reported by the user
[History] - what Actions you decided to take in the previous turns. This
should inform your choice of output.

[World-state-user] - the most recent state of the other user's world, as
reported by the user.
[Visited] - a list of rooms that you and your partner have agreed upon.
[Remaining] - a list of rooms that you and your partner have yet to
visit.

[World-state-user] - the most recent state of the other user's world, as
reported by the user.
[Visited] - current subpath; a list of rooms that have been agreed upon.
[Remaining] - a list of rooms that you and your partner have yet to
visit.
[IBP] - intermediate best path starting with the subpath in [Visited];
the current best path given the known information about your board and
the user's board. Note that the path might change when you learn new
information about the user's coin distribution. You should ALWAYS use
this as a reference point when making a suggestion.
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Figure 10: An overview of agent-specific inputs included in the base system prompt from Fig. 9.
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2 (node-by-node) 3 4 5 6 7 (full path) 8
Baseline 65.5 4.5 1.7 0.3 4.5 23.1 0.3
Problem-Solving 91.6 2.6 0.6 0.3 0.6 4.2 0.0

Table 5: Distribution of the number of arguments to the suggest action per agent per version in the human-agent
setup. Figures expressed in percentages. Bold figures indicate highest percentage, whereas italic figures indicate
second highest percentage.

2 (node-by-node) 3 4 5 6 7 (full path)

Baseline USER 95.8 2.1 0.0 0.3 0.3 1.4
BOT 95.6 3.4 0.5 0.3 0.0 0.3

Coin-Tracking USER 88.5 6.0 0.9 0.0 0.0 4.6
BOT 96.0 2.9 0.0 0.3 0.0 0.6

State-Tracking USER 91.3 5.4 1.2 0.4 0.0 1.7
BOT 99.6 0.4 0.0 0.0 0.0 0.0

Problem-Solving USER 73.5 4.0 0.4 1.8 1.8 18.4
BOT 96.2 1.9 0.5 0.5 0.5 0.3

Table 6: Distribution of the arguments (columns) to the suggest action per agent per version in self-play. Figures
expressed in percentages. Bold figures indicate highest percentage, whereas italic figures indicate second highest
percentage.

The following are allowed kinds of thought:
- [Thought-DRAFT] - This flag signifies part of the output in which you
try to find the best path with the information you are given, while
making sure to visit all rooms only once and return to the starting
room. You should always start with this thought. If the [Thought-DRAFT]
is successful, you should indicate this by generating a solve(x)
Action, whereby x is a Python list of strings referring to the rooms in
the order to be visited. If the [Thought-DRAFT] was not successful,
meaning that a path that corresponds to the constraints has not been
generated, you will generate another thought: [Thought-MISSING].
- [Thought-MISSING] - If you could not find a valid path in [Thought-
DRAFT], you will generate this kind of thought in which you identify
why you couldn't solve the puzzle in the previous step.

- [Thought] - This flag signifies part of the output in which you try
to find the best path with the information you are given (your own coin
distribution, given to you in [World-state-own], and the user's
currently known distribution, given in [World-state-user]), while
making sure to visit all rooms only once and return to the starting
room (check that against [Remaining]). You should always start with
this thought.
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Figure 11: An overview of agent-specific inputs included in the base system prompt from Fig. 9.
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- [Action] - Under this flag, generate the actions you are taking. Here is a
list of allowed actions and their descriptions:
  * suggest(x) - indicates your suggestion of a partial or complete path;
whereby x is an executable python list of strings referring to the rooms in
the order to be visited.
  * agree-inner(x) - indicates your agreement with the proposed partial path
x, whereby x is an executable Python lists of strings referring to the rooms
in the order to be visited.
  * agree-outer(x) - indicates the other player's agreement with the proposed
partial path x, displayed in [Observation], whereby x is an executable Python
lists of strings referring to the rooms in the order to be visited.
  * reject(x) - indicates that path (x) has been rejected either in the
generated [Thought] or by the other user in [Observation]; x is an executable
Python list of strings referring to the rooms in the order to be visited.
  * visit(x) - indicates that both you and the other player agree to visit
room x next; x is a single-letter string, corresponding to the room to be
visited.
  * ask(x) - generate this action to indicate what information to seek from
the user; x is a string.
  * inform(x) - generate this action to indicate what information about your
own world you are sharing with the user; x is a string.
  * end(x) - generate this action when you are ready to end the game and
submit the final solution (x), whereby x is a Python list of strings (of
length 1) referring to the rooms in the order to be visited. This action must
be included in order to end the game.
Here are the most important rules to keep in mind when generating these
actions:
  - "suggest(x)" must be accompanied by an "agree-inner(x)" action
  - "agree-inner(x)" should never be generated if you have previously agreed
on path x
  - "visit(x)" should only be generated in you generate an "agree-inner(x)"
with an "agree-outer(x)" OR when you generate an "agree-inner(x)" to a
previous user suggestion OR if you generate an "agree-outer(x)" to your
previous suggestion
  - "inform(x)" should always be based on the coin distribution in [World-
state-own] (when asked for coin distribution)

  - "ask(x)" and "suggest(x)" actions should always be generated based on the
best path given in [IBP]
  - DO NOT generate a visit(x) action if x is in [Visited]
  - "inform(x)" should always be based on the coin distribution in [World-
state-own] (when asked for coin distribution) or [IBP] (when asked for best
path from node)

## Agent-specific rules
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  - DO NOT generate a visit(x) action if x is in [Visited]
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Figure 12: An overview of the actions description included in the base system prompt from Fig. 9.
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Here is an example conversation:

## [ ... ]

[World-state-own] [["L", "E", 6], ["L", "B", 4], ["L", "K", 2], ["L", "C", 1],
["L", "A", 5], ["E", "B", 3], ["E", "K", 1], ["E", "C", 2], ["E", "A", 6], ["B",
"K", 5], ["B", "C", 4], ["B", "A", 3], ["K", "C", 6], ["K", "A", 2], ["C", "A", 1]]
[History] [suggest(["L", "E"]), agree-inner(["L", "E"]), inform("coins between L
and B, coins between L and A, coins between L and K, coins between L and C"),
ask("coins between L and E, coins between L and B, coins between L and K, coins
between L and A, coins between L and C"), [...] agree-inner(["A", "B"]),
suggest(["B", "K"]), agree-inner(["B", "K"]), inform("coins between E and K"),
ask("coins between A and B, coins between B and K")]
[Observation] that would be perfect for me because i can get 6 light coins between
the bathroom and attic! from the bathroom, i can get 2 coins to the kitchen. From
the kitchen, we would go to the children's room and then back to the living room,
right? The first half of that path would give me 3 more light coins, and the second
half 6 more light coins.

[Thought-DRAFT]: The user agrees with my suggestion and says they can get 6 light
coins going to the bathroom. The user agrees to then go into the kitchen, where
they can collect 2 coins, followed by the children's room, with 3 more light coins,
and finally back to the living room, to collect 6 more light coins.
[Action]: agree-outer(["A", "B"]), visit("B"), agree-outer(["B", "K"]), visit("K"),
agree-outer(["K", "C"]), agree-outer(["C", "L"]), agree-inner(["K", "C"]),
visit("C"), agree-inner(["C", "L"]), visit("C"), solve(["L", "E", "A", "B", "K",
"C", "L"]), end(["L", "E", "A", "B", "K", "C", "L"])
[Message]: Okay great, that works well! Then it's settled and we are done - the
path we decided on is living room --> empty room --> attic --> bathroom --> kitchen
--> children's room --> living room. If my calculations are correct, we should be
getting 52 coins each as our reward, which seems pretty decent!

Here is an example conversation:

[World-state-own]: [["L", "E", 5], ["L", "B", 3], ["L", "K", 1], ["L", "C", 6],
["L", "A", 2], ["E", "B", 4], ["E", "K", 6], ["E", "C", 1], ["E", "A", 3], ["B",
"K", 2], ["B", "C", 5], ["B", "A", 6], ["K", "C", 3], ["K", "A", 4], ["C", "A", 1]]
[World-state-user]: [["L", "E", 6], ["L", "A", 5], ["L", "B", 4]]
[History]: []
[Observation]: Hello there! Let’s get started! It seems that from the living room,
it would be best if I went to the empty room as I could get 6 ghost coins. The other
paths that have a similar amount of coins would be to the attic, where I could get 5
ghost coins, or to the bathroom, where I'd collect 4 ghost coins. What do you think
of this? How many coins could you collect in this way?

[Thought-DRAFT]: This is the start of the game. I know the light coin distribution.
The user suggests going to the empty room, to get 6 ghost coins. This would be good
in the light world as well, because I would collect 5 light coins, for a total of 11
coins. My best move from the living room would be through the children's room, but
the user didn't suggest that.
[Action]: agree-outer(["L", "E"]), agree-inner(["L", "E"]), visit("E"),
inform("coins between L and E, coins between L and C, coins between L and B, coins
between L and A")
[Message]: Oh, I see! Okay, that would be quite good for me as well because going to
the empty room gives me 5 light coins. I would get the most coins if we go to the
children's room, i can get 6 light coins there. Regarding the bathroom, I can only
get 3 light coins, and to the attic I can get only 2 light coins. Thus, if we go to
the empty room, our total would be 11 coins.

## [ ... ]

A.

B.

Figure 13: An abridged overview of the examples included in the Baseline (A.) and Coin-Tracking (B.) agents’ base
system prompts from Fig. 9.
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Here is an example conversation:

## [ ... ]

[World-state-own]: [["L", "E", 6], ["L", "B", 4], ["L", "K", 2], ["L", "C",
1], ["L", "A", 5], ["E", "B", 3], ["E", "K", 1], ["E", "C", 2], ["E", "A", 6],
["B", "K", 5], ["B", "C", 4], ["B", "A", 3], ["K", "C", 6], ["K", "A", 2],
["C", "A", 1]]
[World-state-user]: [["L", "E", 5], ["L", "B", 3], ["L", "C", 6], ["L", "A",
2], ["E", "A", 3], ["E", "K", 6], ["B", "A", 6], ["B", "E", 4], ["B", "K", 2],
["B", "C", 5], ["C", "K", 3], ["K", "L", 1]]
[Visited]: ["L", "E", "A", "B", "C"]
[Remaining]: ["L", "K"]
[Observation]: cool yep that works - i get 3 coins to the kitchen and then 1
coin back to the living room.

[Thought]: The user agrees with my suggestion and says they can get 3 light
coins going to the kitchen and then 1 coin going to the living room. Thus, we
have agreed to visit K and then L.  This means that we are done and can submit
our solution - our final path is ["L", "E", "A", "B", "C", "K", "L"].
[Action]: agree-outer(["C", "K"]), visit("K"), agree-outer(["K", "L"]),
visit(["L"]), end(["L", "E", "A", "B", "C", "K", "L"])
[Message]: Cool, then it's settled and we are done - the path we decided on is
living room --> empty room --> attic --> bathroom --> children's room -->
kitchen --> living room.

Here is an example conversation:

[World-state-own]: [["L", "E", 6], ["L", "B", 4], ["L", "K", 2], ["L", "C", 1], ["L", "A",
5], ["E", "B", 3], ["E", "K", 1], ["E", "C", 2], ["E", "A", 6], ["B", "K", 5], ["B", "C",
4], ["B", "A", 3], ["K", "C", 6], ["K", "A", 2], ["C", "A", 1]]
[World-state-user]: []
[Remaining]: ["L", "E", "K", "B", "C", "A"]
[Visited]: ["L"]
[IBP]: ["L", "E", "A", "K", "C", "B", "L"]
[Observation]: hi there! what should we do?

[Thought]: This is the start of the game. I know the ghost coin distribution and my
current best path. According to my [IBP], I should start by going from the living room to
the empty room. This way I will get 6 coins. I will suggest this (suggest, agree-
inner(["L", "E"])) to the user. I don't know anything about the user's coin distribution
or best path, so I should ask. I will also declare the two alternative paths that have a
large amount of coins: going to the attic (where I get 5 coins), and going to the bathroom
(where I get 4 coins).
[Action]: suggest(["L", "E"]), agree-inner(["L", "E"]), inform("coins between L and E,
coins between L and A, coins between L and B"), ask("coins between L and E, best next step
from L")
[Message]: Hello there! Let’s get started! From the living room, it would be best if I
went to the empty room, as I could get 6 ghost coins. What do you think of this? How many
coins could you collect in this way, and what would be your best starting move?
Alternatively, going to the attic yields 5 ghost coins and going to the bathroom 4 ghost
goins.

## [ ... ]

C.

D.

Figure 14: An abridged overview of the examples included in the State-Tracking (C.) and Problem-Solving (D.)
agents base system prompts from Fig. 9.
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USER BOT

Board Setup 1

Board Setup 2

Board Setup 3

Board Setup 4

Board Setup 5

Board Setup 6

Table 7: The six board setups used in the experiments.
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Figure 15: The full co-occurrence matrix illustrating the probabilities of each action along the y axis occurring with
each action along the x axis (P (x|y)); Problem-Solving USER agent.
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