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Abstract

This paper presents a systematic evaluation of
nearest neighbors across semantic representa-
tion spaces in both textual and visual modalities.
We focus on nominal concepts with varying
concreteness levels, and apply a neighborhood
overlap measure to compare these target con-
cepts differing in their linguistic and perceptual
nature. We find that alignment is primarily de-
termined by modality, and additionally by level
of concreteness: Models from the same modal-
ity show stronger alignment than cross-modal
models, and spaces of concrete concepts show
stronger alignment than those of abstract ones.
Overall, larger neighborhood size strengthens
the alignment between spaces.

1 Introduction

Humans possess an intuitive understanding of con-
cepts and their relative positions within a shared
semantic space. For instance, we perceive cat as
being more similar to dog than to table. This sense
of conceptual proximity is grounded in real-world
knowledge and similarity across multiple attribute
dimensions—such as form (e.g., four-legged ani-
mals), category membership (e.g., pets, furniture),
and function (Rosch, 1973; Talmy, 1983).

In natural language processing, prototypical at-
tributes and similarity between concepts are gener-
ally captured by vector representations and vector
distance measures. At the textual level, these repre-
sentations are learned either through count-based
methods such as co-occurrence matrices (Turney
and Pantel, 2010), or predictive models such as
shallow neural networks trained on target or context
prediction objectives (Mikolov et al., 2013; Pen-
nington et al., 2014a). In these vector spaces, rel-
ative position and structure encode semantic relat-
edness. Similarly, vision models such as convolu-
tional neural networks (Krizhevsky et al., 2017) and
vision transformers (Dosovitskiy et al., 2020) map
images into vector spaces where proximity reflects

Level Range Concepts
abstract 1.0 – 2.0 idea, justice
mid-scale 3.0 – 4.0 story, election
concrete 4.8 – 5.0 apple, car

Table 1: Concreteness ranges and example concepts
based on Brysbaert et al. (2014).

not only semantic but also perceptual similarity
(Battleday et al., 2020). While text embeddings are
based on distributional patterns in language, image
embeddings are grounded in visual features—such
as shape, color, and scene (Krizhevsky et al., 2017).

In the current study, we build and compare rep-
resentations in textual and visual modalities regard-
ing concrete vs. abstract concepts, which differ in
their perceptual nature (vision, sound, smell, taste,
touch): Concrete concepts such as apple are more
easily grounded in perceptual features, in contrast
to abstract concepts such as idea, which lack stable
visual referents and are stronger connected to lin-
guistic context (Paivio, 1971; Andrews et al., 2009;
Pecher et al., 2011; Frassinelli and Lenci, 2012;
Brysbaert et al., 2014; Frassinelli et al., 2017; Nau-
mann et al., 2018; Tater et al., 2024, 2025).

We conduct a systematic analysis of seman-
tic attributes across modalities and across the
abstractness-concreteness continuum, by relying
on a simple and interpretable nearest-neighbor over-
lap to capture embedding space alignment between
concepts. We demonstrate that modality is indeed
the primary factor shaping semantic neighborhoods,
with stronger alignment within modalities for both
concrete and abstract concepts, while cross-modal
agreement is stronger for concrete than for abstract
concepts.

2 Data and Methods

In this section, we describe the target concepts, the
variants of textual and visual representations, and
how we identify nearest neighbors.
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Target Concepts This study uses a curated set
of 1,500 nouns drawn from the Brysbaert concrete-
ness ratings (Brysbaert et al., 2014). To guarantee
clear distinctions between sets of concepts, this
set consists of 500 nouns each from three distinct
levels of concreteness: extremely abstract, inter-
mediate mid-scale, and extremely concrete noun
concepts (see Table 1 for concreteness ranges and
example concepts). As nearest neighbor candidates
for the target concepts we include a larger set of
5,448 nouns from the Brysbaert ratings, as con-
structed in our previous work (Schulte im Walde
and Frassinelli, 2022).

Distributional Word Representations We built
textual representations for our target concepts and
nearest neighbor candidates by training both count-
based and predictive word embedding models on
the ENCOW16AX corpus (Schäfer and Bildhauer,
2012; Schäfer, 2015). Count-based embeddings
were created with a symmetric window of ±20
nouns, verbs and adjectives occurring at least 50
times in the corpus; each word is represented by
a 46,716-dimensional vector. GloVe embeddings
were created using a symmetric window of ±15
and a minimum frequency of 5, relying on the orig-
inal implementation in Pennington et al. (2014b);
each word is represented by a 50-dimensional em-
bedding. Word2Vec embeddings were created
with a context window of ±5 and a minimum fre-
quency of 5 using the skip-gram objective over
10 epochs with the Gensim package (Řehůřek and
Sojka, 2010); each word is represented by a 300-
dimensional embedding. FastText embeddings
were created with a context window of ±5 and
a minimum frequency of 2 over 5 epochs using
the FAIR FastText implementation (Bojanowski
et al., 2017); each word is represented by a 100-
dimensional embedding.

Sentence Representations We built a second
set of transformer-based textual representations
for our target concepts, as a more direct point of
comparison with representations based on vision-
transformers (see below), by mean-aggregating em-
beddings of 35 sentences of each noun retrieved
from the ENCOW16AX corpus. Embeddings for
each sentence were generated from the models with
the SentenceTransformer package (Reimers and
Gurevych, 2019). Mpnet embeddings uses a pre-
trained mpnet-base (Song et al., 2020) finetuned on
1B sentence pairs. We use all-mpnet-base-v2
(Hugging Face, 2021); the resulting embeddings

have a dimensionality of 768. Gemma embed-
dings is a 300M parameter embedding model
derived from Gemma 3 (Gemma Team et al.,
2025). We use google/embeddinggemma-300m
(Schechter Vera et al., 2025); the resulting embed-
dings have a dimensionality of 768. Qwen3 em-
beddings use a 0.6B parameter embedding model
from the Qwen model family (Yang et al., 2025).
We rely on Qwen/Qwen3-Embedding-0.6B (Zhang
et al., 2025); the resulting embeddings have a di-
mensionality of 1024.

Visual Representations We built visual rep-
resentations relying on the top 35 images for
each noun using Bing Image Search (Microsoft
Corporation, 2025). Images identified as corrupted
or irrelevant were automatically replaced. Image
quality was probed as described in Appendix A.1.
The visual embedding of each concept was
created by mean aggregating the [CLS] token
embeddings, by passing through the respective
models the top-n images (with 1 ≤ n ≤ 35).
Vision Transformer (ViT) embeddings use the
model google/vit-base-patch16-224-in21k
(Google, 2021). The resulting embeddings have
a dimensionality of 768, serving as a baseline for
concept representation from a pure vision trans-
former trained in a supervised manner. DINOv2
embeddings represent concepts using a vision
transformer trained in a self-supervised manner.
We rely on the facebook/dinov2-base model
(Oquab et al., 2024; FacebookAIResearch, 2023);
the resulting embeddings have a dimensionality
of 768. Hiera embeddings represent concepts
using a vision transformer with a hierarchical
architecture trained in a supervised manner. We
rely on the facebook/hiera-large-224-hf
model (FacebookAIResearch, 2024); the resulting
embeddings have a dimensionality of 768. CLIP
embeddings represent concepts using a vision
transformer trained to align images and captions
with contrastive loss. We rely on the image
encoder of the openai/clip-vit-base-patch32
(OpenAI, 2021; Radford et al., 2021) model; these
embeddings have a dimensionality of 512.

Nearest Neighbor Identification We identify
the nearest neighbors of a specific concept within
a specific semantic embedding space by calculat-
ing the cosine between vector representations of
the concept and each nearest neighbor candidate
in that space, and then sorting the neighbors by
decreasing cosine score.
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Figure 1: Neighborhood overlap (top-25) across representations for abstract, mid-scale, and concrete concepts.

We vary both the number and start rank of the
nearest neighbors we sample, by including the nth
to kth nearest neighbors, 1 ≤ n ≤ k ≤ 100; for
example, with n = 1 and k = 5 we would include
the 5 nearest neighbors, and with n = 5 and k = 10
we would include the 5th to 10th nearest neighbors.

At the core of comparing nearest neighbors
across textual and visual semantic representations,
we apply a measure of neighborhood overlap in
the following way. First, we calculate the overlap
On,k

c of nearest neighbors for a concept c, where
Nspacei(c)[n : k] denotes the set of neighbors of c
ranked from n to k (inclusive) in a given space i:

On,k
c =

|Nspace1(c)[n : k] ∩Nspace2(c)[n : k]|
k − n+ 1

(1)
The concept-specific overlap scores On,k

c are then
aggregated by averaging across all target concepts
c in the set C (e.g., the set of all abstract concepts):

Oobs =
1

|C|
∑

c∈C
On,k

c (2)

In order to interpret these observed overlap scores
Oobs relative to random chance, we define a nor-
malized alignment score (NAS) by taking into ac-
count the expected overlap Orand between two ran-
dom sets of x neighbors from a candidate set of
N concepts. This reflects the expected proportion
of shared neighbors for two spaces with random
concept positions:

Orand =
x

N − 1
(3)

Our NAS score rescales the observed overlap Oobs

against the expected overlap Orand. A score of
0 indicates overlap by chance; 1 indicates perfect
alignment in the observed neighborhood band.

NAS =
Oobs −Orand

1−Orand
(4)

Significance Testing We evaluate whether a sin-
gle alignment score is significantly greater than
chance using a non-parametric sign-flip permu-
tation test which assumes the null hypothesis of
symmetric scores around. Given a score vector
x = (x1, . . . , xN ) across N concepts we compute
the observed mean and compare it to a null distri-
bution obtained by randomly flipping signs of xi
across B = 10,000 permutation. The two-sided p-
value is the proportion of permuted means at least
as extreme as the observed.

Because our concept sets are large (N=5,448
for the full set of neighbor candidates from Brys-
baert, and N=500 for each concreteness band), and
because of a standard error of mean scaling with
1/
√
N (Good, 2004), statistically significant align-

ment differences are at the level of NAS ≈ 0.01.

3 Experiments and Results

Given that we are interested in overlapping vs. com-
plementary nearest neighbors of abstract and con-
crete concepts in various modality spaces, we re-
port as results and main insights variants of pair-
wise comparisons relying on NAS.

Effect of Models and Modalities Figure 1 shows
NAS scores for all model pairings across the three
concept sets (abstract, mid-scale and concrete, from
left to right) at a fixed neighborhood size of 25.
The top and left-most four models in the matrices
refer to the visual representations, the bottom and
right-most seven (four distributional word and three
sentence representations) refer to the textual ones.

Modality is clearly the overall dominant fac-
tor in alignment scores, i.e., across concrete-
ness levels, model pairs from the same modal-
ity (text-text and image-image, cf. top left
and bottom right parts of matrices) show sub-
stantially stronger overlap than cross-modal
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Figure 2: Neighborhood overlap (top-25) differences: ∆mid−abstract, ∆concrete−mid, and ∆concrete−abstract.

pairs: Across abstract/mid-scale/concrete con-
cept sets, alignment scores of image-image
spaces reach 0.50/0.56/0.58 (ViT/DINOv2),
and alignment scores of text-text spaces reach
0.69/0.73/0.77 (Word2Vec/FastText), respec-
tively, while across-modality alignment scores only
reach 0.14/0.16/0.26.

The architectural differences of models within
a modality also influence the alignment (with
strongest within-modality alignments for word-
based distributional models, and weakest ones
for sentence-based representations), however to
a lesser degree. Overall, the presented alignment
patterns thus indicate that while semantic spaces
are structured similarly within the same modality,
visual and textual modalities shape them in funda-
mentally different ways.

The modality gap is strongest for abstract con-
cepts, which are inherently more challenging to
ground in visual features. For example, the 3×3 top
left parts of the matrices in Figure 1 (image-image
alignment) show increases from alignment range
[0.25, 0.50] for abstract concepts to [0.36, 0.56] for
intermediate and [0.44, 0.58] for concrete concepts;
the 4 × 4 middle part of the matrices (distribu-
tional text-text alignment, which also presents the
overall strongest alignments) shows increases from
alignment range [0.50, 0.69] for abstract concepts
to [0.54, 0.73] for intermediate and [0.58, 0.77] for
concrete concepts.

We also find – but to a more subtle degree – that
both within and across modalities the alignment is
consistently higher for concrete concepts in com-
parison to mid-scale concepts, where it is again
higher than for abstract concepts. Figure 2 illus-
trates this pattern across concreteness levels, by
showing the differences (∆ scores) between align-
ment scores of mid-scale vs. abstract concept sets
(left), concrete vs. mid-scale sets (middle) and con-

crete vs. abstract sets (right). We can see that the
∆ scores strongly increase from left to right, with
differences of up to 0.21 for image-image align-
ment and up to 0.18 for text-text alignment. This
confirms prior research that concrete concepts tend
to have less diverse neighbors than abstract con-
cepts (Recchia and Jones, 2012; Kiela et al., 2014;
Danguecan and Buchanan, 2016; Reilly and Desai,
2017; Naumann et al., 2018; Schulte im Walde and
Frassinelli, 2022; Tater et al., 2024).

Effect of Image Aggregation We now look into
the effect of increasing the number of images used
for creating visual representations. Figure 3 com-
pares the top-100 overlap of ViT embeddings with
an increasing number of images against textual
embeddings from FastText, and visual embeddings
from DINOv2 and CLIP. The plot illustrates that ag-
gregating image embeddings via mean pooling no-
tably increases alignment scores when adding more
images. This development can be attributed to the
aggregation process mitigating the multiplicity and
saliency issues, which are inherent in any visual
representation – challenges which are more pro-
nounced when visual cues are more variable. Ac-
cordingly, the aggregation effect is stronger within
the vision modality, as it does not affect the gap
between the difference in concept representations
across modalities. Appendix A.2 further explores
the differences of image aggregation across con-
creteness levels.

Effect of Neighborhood In our last analysis, we
explore the role of neighborhood sizes, by com-
puting NAS profiles for increasing neighborhoods.
The plots in Figure 4 shows these profiles for se-
lected model pairings within and across modalities
as well as across concreteness level: abstract, mid-
scale, concrete, and all concepts.

145



Figure 3: Neighborhood overlap (top-100) across repre-
sentations and concepts using 1–35 images.

We can see that all alignments involving text
models (top three) show a recurring pattern: the
alignment is clearly highest for concrete concepts
(green lines), and it is lowest for abstract concepts
(orange lines), while alignments for mid-scale con-
cepts and across all concepts (red/blue, respec-
tively) are in-between. For the image-image pairing
(bottom), the picture is slightly different for con-
crete concepts, whose alignment declines relative
to the other concepts with increasing neighborhood
size. Across all pairings, the alignment tends to
monotonically increase with larger neighborhood
sizes, except in the case of concrete concepts in
image-image pairings. The above observations
hold for most model pairings.

Overall, our analysis hints at (i) higher variabil-
ity of immediate neighbors, while larger neighbor-
hoods capture broader semantic similarities, and
(ii) more variability in neighborhoods of more ab-
stract in comparison to more concrete concepts.
The contrast between within- and cross-modal
alignment remains, thus reaffirming the impact of
modality on semantic structure.

4 Conclusion

We presented a systematic evaluation of nearest
neighbors of abstract and concrete concepts by ap-
plying a simple, interpretable, modality- and model-
agnostic metric to comparing a variety of textual
and visual semantic embedding spaces. Our results
confirm that modality is the primary factor shaping
semantic structure: Alignments of neighborhoods
within the same modality are stronger than align-
ments across modalities. Specifically focusing on

concepts across concreteness levels, we found that
concrete concepts show higher alignment of se-
mantic space neighbors than abstract ones, which
confirms the difference in perceptual strength in
the visual domain, where grounding them is es-
pecially challenging. A mean aggregation of im-
ages strengthened the alignment with diminishing
returns beyond 20–25 images per concept; also,
larger neighborhood sizes evoked stronger align-
ments. Our findings provide a foundation for fur-
ther analysis of cross-model and cross-modal dif-
ferences in meaning representation.

Figure 4: NAS profiles for increasing neighborhood
sizes and across concreteness levels.
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Limitations

While our method provides interpretable, model-
and modality-agnostic comparisons of semantic
spaces, several limitations should be acknowledged.
Hubness in high-dimensional semantic spaces may
inflate alignment scores for some central positioned
concepts, which can distort the overlap based com-
parison for this subset of concepts. Bing Image
Search introduces both variation and bias based on
cultural and temporal factors (time of retrieval) in
its search engine ranking. The retrieved images
may therefore not be a comprehensive or com-
pletely representative sample of the possible de-
pictions for a target concept. Our approach pri-
marily focuses on local neighborhood structure by
comparing ranked orderings. It does not account
for global structural properties of these embedding
spaces and also overlooks differences in distances
between concepts.
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A Appendix

A.1 Image Quality Assessment
To assess image quality, we manually rated images
for 30 randomly sampled concepts (10 per cate-
gory) on a Likert-scale based on how well the im-
age visually represented the concept. Images that
contained the concept word in written form were
counted separately. As shown in Table 2, concrete
concepts had the highest visual quality and lowest
proportion of textual depictions, while abstract con-
cepts were harder to depict and often appeared as
symbolic or textual representations.

Level Mean Rating Std Rating Text
abstract 1.99 0.98 0.39
mid-range 3.59 0.94 0.11
concrete 4.67 0.21 0.01

Table 2: Mean image quality ratings and proportion of
images with textual depictions, by concreteness level.

A.2 Effect of Aggregation by Concept Set
In Figure 5 we can see that the effect of aggrega-
tion is more pronounced for more abstract concepts,
which often do not have direct visual referents and
are therefore more variable in their visual represen-
tation. In the text-vision comparison the effect is
also visible if one accounts for the stronger effect
of concreteness levels on final alignment.

A.3 Qualitative Analysis of Nearest Neighbors
We inspected the top-5 nearest neighbors for four
concepts of varying concreteness: eye (concrete
4.9), goal (mid-scale 3.06), probability (abstract,
symbolically depictable, 1.65) and ethos (abstract,
symbolically non-depictable, 1.58). Both vision
and text models produce plausible neighbors for all
concepts, with one exception: lacking clear visual
referents, ethos poses a challenge for the image
models – only CLIP finds meaningful neighbors,
as seen in Table 3.

Figure 5: Neighborhood overlap (top-100) across repre-
sentations for abstract, mid-scale and concrete concepts
(top to bottom) using increasingly more images (1–35).
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Concept: eye
ViT Hiera CLIP Count GloVe FastText
pupil cataract pupil nose hair eyelid
eyelid pupil macro moment nose nose
macro eyelid eyelid spectacle body eyesight
cataract macro blindness mouth ear ear
eyesight cavity cataract amazement skin forehead

Concept: goal
ViT Hiera CLIP Count GloVe FastText
competition spontaneity effort ambition effort effort
greatness effort life team chance scorer
optimism choice achievement effort success goalkeeper
determination inaction teammate motivation advantage striker
confidence enthusiasm victory ability momentum ball

Concept: probability
ViT Hiera CLIP Count GloVe FastText
interpolation interpolation interpolation likelihood correlation likelihood
denominator prevalence subset sensitivity likelihood variance
differentiation subroutine permutation estimation variance estimation
combination vertex combination occurrence prediction prediction
fraction hypothesis approximation propensity estimation approximation

Concept: ethos
ViT Hiera CLIP Count GloVe FastText
competence iteration pathos academy ethic ethic
outcome proposition personality school mindset attitude
competency validity ethic community commitment commitment
analysis percentage trait pupil professionalism tradition
epidemiology tradeoff empathy aspiration culture individuality

Table 3: Five nearest neighbors per concept in vision (ViT, Hiera, CLIP) and text (Count, GloVe, FastText) models.
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