# If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition

# Shubhashis Roy Dipta, Francis Ferraro

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore, MD 21250 USA
{sroydip1,ferraro}@umbc.edu

#### **Abstract**

Prior work has shown that presupposition in generated questions can introduce unverified assumptions, leading to inconsistencies in claim verification. Additionally, prompt sensitivity remains a significant challenge for large language models (LLMs), resulting in performance variance as high as 3-6%. While recent advancements have reduced this gap, our study demonstrates that prompt sensitivity remains a persistent issue. To address this, we propose a structured and robust claim verification framework that reasons through presupposition-free, decomposed questions. Extensive experiments across multiple prompts, datasets, and LLMs reveal that even state-of-the-art models remain susceptible to prompt variance and presupposition. Our method consistently mitigates these issues, achieving up to a 2–5% improvement.<sup>1</sup>

# 1 Introduction

While current large language models (LLMs) (Dubey et al., 2024; Touvron et al., 2023; DeepSeek-AI et al., 2025; Qwen et al., 2025) demonstrate strong performance in claim verification (Tang et al., 2024; Kamoi et al., 2023) when provided with ground truth evidence, they can improperly presuppose parts of the claim, which can then lead to incorrect conclusions or explanations. Consider, for example, the claim illustrated in Fig. 1: "A Bollywood movie won the Oscar in 1928": an LLM might simply verify whether "any Bollywood movie won the 1928 Oscar," thereby accepting the existence of the 1928 Oscar without verifying it first.<sup>2</sup> In contrast, a more skeptical verifier would first ask, "Was there an Oscar in 1928?" – and only if that is true, proceed to verify the rest of the claim. This multi-layered reasoning highlights the need for decomposition-based verifi-

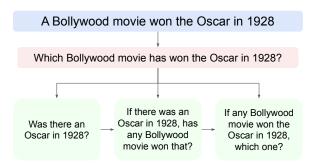


Figure 1: In contrast to simple claim decomposition, which can presuppose some parts of the claim as true (i.e. there were Oscars in 1928), our method automatically generates a collection of presupposition-free questions to verify each part of the claims. Here, it first asks whether there were Oscars in 1928, conditioning any subsequent questions on that answer.

cation that explicitly questions and validates every presupposition before drawing a conclusion.

We propose such a method of question-based decomposition and verification. Specifically, we demonstrate how presupposition-free questions can reduce prompt sensitivity, improve verification performance, and constrain overthinking. This simple yet effective method creates structured reasoning paths that reduces prompt sensitivity by 2–5%, offering a significant robustness gain. Our approach improves performance across both general and domain-specific scientific claim verification while reducing the need for labor-intensive prompt-tuning across datasets.

To summarize, our contributions are as follows:

- 1. We propose a decomposition and depresupposition based question generation method to produce fine-grained questions.
- 2. We show that while LLMs are highly sensitive to prompt variations, our structured reasoning approach significantly reduces this sensitivity, improving robustness across prompts.
- 3. We demonstrate that our automated question

https://github.com/dipta007/De-Presuppose

<sup>&</sup>lt;sup>2</sup>The Oscars were first awarded in 1929.

- generation achieves approximately 89% coverage of atomic subclaims in a zero-shot setting.
- 4. We show that our method outperforms strong baselines by 2–5% across two datasets, three prompt variants, and three reasoning models.

Our code is available at https://github.com/dipta007/De-Presuppose.

## 2 Method

Given a claim ("Bollywood movie has won the Oscar in 1928"), our approach proceeds in three steps: First, we automatically **decompose the claim into** simpler questions (§2.1) – "Which Bollywood movie has won the Oscar in 1928?". We recognize that the generated questions may presuppose certain facts, such as "There was an Oscar award in 1928." To account for this, we next **reformulate** and expand these questions to remove presuppositions, resulting in presupposition-free questions  $(\S 2.2)$  – "(a) Was there an Oscar in 1928?, (b) If there was, has any Bollywood movie won that? (c) If yes, which one was that?" Finally, we use a reasoner to verify the claim (§2.3) with the help of these questions. Our results show that this structuring improves claim verification performance.

#### 2.1 Question Generation

Chen et al. (2022) demonstrated that using evidence during question generation yields significantly better results. Motivated by this, we incorporate both claim and evidence in our question generation process. Inductively, we prompt an LLM to decompose a claim into separate, independent questions<sup>3</sup>. We adopted the prompt from Kamoi et al. (2023) to better align with our question decomposition module instead of their subclaim decomposition. Specifically, their few-shot prompt includes examples of claim-to-subclaim decomposition, which we adapted by converting the assertive statements into questions.

#### 2.2 Question De-Presupposition

Through manual review of the generated questions, we identified that some of them presuppose information that may or may not be true, i.e., "Which Bollywood movie has won the 1928 Oscar?". While a model could, in theory, decompose the claim into presupposition-free questions,

<sup>3</sup>Prompt is provided on App. A.1.1

in practice we noticed this did not consistently happen. Rather, we noticed that models' subsequent reasoning over those questions would go a different way than intended. To address this, we employ LLM-based prompting to process the questions and decompose any presuppositions into multiple subquestions, as illustrated in Fig. 1. Specifically, for each question, we prompt the LLM to decompose it into presupposition-free atomic question<sup>4</sup>.

# 2.3 Reasoning through Questions

Next, we employ a reasoning model that utilizes both the questions and the evidence to verify the claim. The key in our approach is that the presupposition-free questions from the previous step can guide the LLM to reason effectively, instead of directly verifying the claim based solely on the evidence. We do this reasoning by prompting an LLM; however, Sclar et al. (2024) found that even large models are susceptible to prompt variance. Similarly, we found in our experiments that there was significant variation in performance based on which exact prompt we used: one was adopted from Tang et al. (2024)'s verification prompt ("MiniCheck"), and two others were written by this paper's authors in an attempt to provide more Structured Guidance (we call them "SG1" and "SG2"). We provide full details and results in appendix (App. A.3). Overall, we found that just by using these prompts alone performance varied by up to 6% accuracy. This shows the need to mitigate prompt sensitivity; as our results will show, our method provides this ability.

# 3 Experiments

**Evaluation Metric:** We used balanced accuracy (BAcc) as the evaluation metric (Tang et al., 2024; Kamoi et al., 2023), due to the imbalance between all the labels. To evaluate our question module, we have proposed a question coverage metric to assess the accuracy of generated questions (§3.2).

**Datasets:** We used the BioNLI (Bastan et al., 2022) and WiCE (Kamoi et al., 2023) dataset. While BioNLI features highly complex and domain specific scientific claims, WiCE has the real-life claims from Wikipedia. We have also curated a random balanced subset (300 claim-evidence pairs) of the BioNLI dataset to experiment with much costlier models, i.e., o4-mini. We call it BioNLI-300. Following previous works (Tang et al., 2024;

<sup>&</sup>lt;sup>4</sup>Prompt is provided on App. A.1.2

| Prompt     | Only-Reasoner    | Reasoner + Question<br>Decomposition | Our Method       |  |
|------------|------------------|--------------------------------------|------------------|--|
| BioNLI-FU  | LL               |                                      |                  |  |
| SG2        | $73.74 \pm 0.10$ | $76.57 \pm 0.08$                     | $76.57 \pm 0.19$ |  |
| SG1        | $72.34 \pm 0.26$ | $76.72 \pm 0.14$                     | $77.73 \pm 0.06$ |  |
| MiniCheck  | $77.58 \pm 0.14$ | $78.04 \pm 0.14$                     | $78.32 \pm 0.15$ |  |
| BioNLI-300 | 1                |                                      |                  |  |
| SG2        | $69.11 \pm 0.42$ | $72.56 \pm 1.50$                     | $73.44 \pm 1.40$ |  |
| SG1        | $68.44 \pm 0.68$ | $74.11 \pm 1.29$                     | $75.00 \pm 2.18$ |  |
| MiniCheck  | $73.33 \pm 0.98$ | $74.33 \pm 1.25$                     | $75.11 \pm 1.10$ |  |
| WiCE       |                  |                                      |                  |  |
| SG2        | $76.36 \pm 0.27$ | $79.32 \pm 0.49$                     | $79.03 \pm 0.00$ |  |
| SG1        | $73.41 \pm 0.56$ | $78.23 \pm 0.64$                     | $76.42 \pm 0.92$ |  |
| MiniCheck  | $80.70 \pm 0.30$ | $81.72 \pm 0.50$                     | $82.25 \pm 0.62$ |  |

Table 1: Results (with standard deviation) on the BioNLI and WiCE dataset. Full results are reported in the appendix (Table 4).

Kamoi et al., 2023), we converted the WiCE dataset from a three-class problem to binary classification by considering both 'Refuted' and 'Partially Supported' as the 'Refuted.' Detailed dataset statistics are in the appendix (Table 8).

**Experimental Setup:** We have used Qwen/QwQ-32B and o4-mini as the reasoner models. Both models were run with the default temperature settings, while for o4-mini, we utilized the "high" reasoning setup. More details on the implementation is provided on App. A.2.

#### 3.1 RQ1: Does de-presupposition help?

We consider three setups: (1) Only Reasoner, (2) Reasoner + Question Decomposition and (3) Our method with de-presupposition. The results of all the settings are reported in Table 1. The findings indicate that de-presupposition consistently improves performance across all settings. The full results in Table 4 also show that most notable gains are observed when paired with a more capable reasoning model, such as o4-mini. We hypothesize that less capable models may not fully leverage the benefits of presupposition-free questions. The impact of de-presupposition is more pronounced on complex, multi-hop datasets like BioNLI, while the improvements are less substantial on simpler datasets such as WiCE.

We also experimented with adding an explicit answer module to further ease the burden on the verifier. However, as shown in Table 5, this addition often degrades performance. We hypothesize that generating intermediate answers may introduce errors that propagate to the verifier. While

| Question Decomposer | Question Coverage |
|---------------------|-------------------|
| o4-mini             | $89.16 \pm 0.20$  |
| Qwen/QwQ-32B        | $87.41 \pm 0.00$  |

Table 2: Coverage of the sub-claims from the WiCE dataset. Standard deviation is across 3 runs for question decomposing.

a similar risk exists for question decomposition and de-presupposition, breaking a claim into subquestions—and refining them into presuppositionfree forms—is comparatively easier and less errorprone than answering questions directly from long, unstructured documents.

# 3.2 RQ2: Do we cover sub-claims?

To analyze how well our generated questions cover the critical parts of the claim, we use the decomposed subclaims from the WiCE dataset. We employed Qwen/Qwen3-32B to evaluate coverage. During evaluation, for each subclaim, we asked the model whether it was addressed by at least one question or a combination of multiple questions. This approach accounts for the fact that a single subclaim may be implicitly addressed by multiple questions, aligning with our goal of generating as many skeptical and granular questions as possible. For example, the claim "San Jose is the biggest city in Texas" can be decomposed into two questions: (1) Is San Jose a city in Texas? and (2) If yes, is it the biggest? To avoid occasional contextualization issues when aligning questions with subclaims, we provided the ground truth evidence as additional context, allowing the LLM to properly de-contextualize the questions.<sup>5</sup>

Table 2 shows we achieve ~89% coverage of subclaims, regardless of the underlying LLM. These results underscore that question decomposition is highly effective in zero-shot settings, while the low standard deviation across runs highlights the robustness of the question generation.

#### 3.3 RQ3: Can we mitigate prompt variance?

In the next RQ, we explore if our proposed method can mitigate the prompt sensitivity. To analyze this question, we used our method across two datasets – WiCE (Kamoi et al., 2023) and BioNLI (Bastan et al., 2022), using three different prompts<sup>6</sup>

<sup>&</sup>lt;sup>5</sup>Prompt is provided in App. A.1.6

<sup>&</sup>lt;sup>6</sup>Prompts are shown in App. A.1.3, App. A.1.4, App. A.1.5.

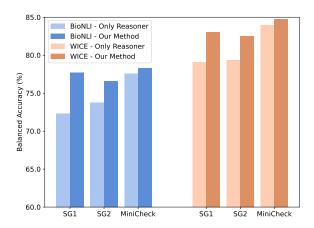


Figure 2: Balanced accuracy on the BioNLI (blue bar) and WiCE (orange bar) benchmarks under three prompt variants. Full results are reported in appendix (Fig. 4).

and three different models (o4-mini, *Qwen/QwQ-32B*). Due to the high API cost of o4-mini and the large number of samples in the BioNLI dataset (Table 8), we used only the Qwen models<sup>7</sup> for evaluating the BioNLI full dataset.

The results presented in Fig. 2 offer several key insights: (1) Our method outperforms the baseline across all datasets, prompts, and models, highlighting its effectiveness, and (2) It mitigates the performance degradation caused by prompt variance, demonstrating the robustness of the method.

#### 3.4 Error Analysis

In Fig. 3 we present an excerpted annotated example from WiCE. On the left we show our approach, and on the right we show an LLM reasoner without our approach. Note that our structured reasoning can mitigate overthinking. In the red box, Qwen3-32B over-analyzed the evidence, placing unnecessary emphasis on the publication date (Feb 1) instead of the key event date (Jan 31), leading to an incorrect conclusion. In contrast, our method first decomposes the claim into high-level questions and then further into subatomic questions through depresupposition, filtering out irrelevant information. We show additional full examples in the App. A.5.

#### 4 Related Works

Many works have explored claim verification (Kamoi et al., 2023; Tang et al., 2024; Zha et al., 2023; Min et al., 2023; Song et al., 2024; Wang et al., 2024), but the decomposition of claims into

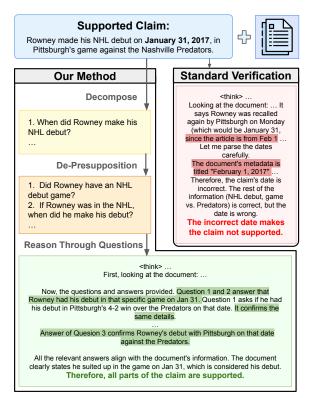


Figure 3: Question-answer-based reasoning (left) vs. typical verification by a reasoner model (right) on a SUPPORTED claim from WiCE (Kamoi et al., 2023).

questions is a relatively newer field. Chen et al. (2022) employed a trained question decomposer model to break down claims into multiple questions. In contrast, our method focuses on zero-shot question decomposition using the inherent knowledge embedded in LLMs, allowing it to be applied across different domains of claim verification, such as scientific, real-life, and political claims.

Hu et al. (2025) demonstrated that direct claim decomposition yields mixed results depending on the strength of the verifier. Our findings are similar, with performance varying based on the type of prompts used. However, our work focuses on reducing this issue to a greater extent. Similarly, Fleischer et al. (2025) employed a question-based decomposition to answer the main question. Xue et al. applied a similar question-answer graph with a voting mechanism to solve mathematical problems. However, claim verification requires more extensive reasoning because its questions are less deterministic—unlike mathematical questions, claims do not follow a logical rationale, and thus the decomposition requires more filtering and reasoning.

In the multimodal domain, Cho et al. (2023) introduced a method of decomposing text into a graph of questions to evaluate text-to-image mod-

<sup>&</sup>lt;sup>7</sup>Due to space, o4-mini results on the BioNLI-300 dataset are provided in Table 4 in the appendix.

els. Similarly, Jiang et al. (2024) decomposed both questions and images to answer the main question.

Recently, Lyu et al. (2025) has proposed a pipeline through question-answering to detect if a text has presupposition or not. Similarly, Kim et al. (2021) has shown that using presupposition-based decomposition improve the retrieval and hence improve the end-QA performance.

In contrast, our method focuses on a less explored aspect of decomposition, presupposition, and its impact on prompt variance and overthinking in reasoning models using dynamic question generation.

#### 5 Conclusion

We introduce a novel question decomposition approach for generating presupposition-free, atomic questions that systematically interrogate each part of a claim. This study is inspired by how humans think by decomposing and verifying each part of a complex claim. Using our approach, we have shown that we can mitigate the prompt sensitivity by constraining it to thinking structurally than free form. We hope this line of research encourages further exploration into decomposition-based reasoning as a foundation for building more trustworthy and transparent claim verification systems.

#### Limitations

While the current LLMs are very effective as LLM-as-a-judge, there is always an inherent nature of randomness which can affect the question coverage metric. Also, we have not tested different other prompting methods due to the size of the dataset, computation constraints and high API cost. Furthermore, while we have shown empirically that our method improves the end-performance on claim verification task, we have not manually verified the outputs (if they are presupposition free) due to the size of the dataset.

#### Acknowledgments

We thank the reviewers for their detailed comments and suggestions. Some experiments were conducted on the UMBC HPCF, supported by the National Science Foundation under Grant No. CNS-1920079. This material is also based on research that is in part supported by the Army Research Laboratory, Grant No. W911NF2120076, and by DARPA for the SciFy program under agreement number HR00112520301. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, of DARPA or the U.S. Government.

# References

Mohaddeseh Bastan, Mihai Surdeanu, and Niranjan Balasubramanian. 2022. BioNLI: Generating a Biomedical NLI Dataset Using Lexico-semantic Constraints for Adversarial Examples. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pages 5093–5104, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Jifan Chen, Aniruddh Sriram, Eunsol Choi, and Greg Durrett. 2022. Generating literal and implied subquestions to fact-check complex claims. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 3495–3516, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal, Jordi Pont-Tuset, and Su Wang. 2023. Davidsonian scene graph: Improving reliability in fine-grained evaluation for text-to-image generation. *arXiv* preprint arXiv:2310.18235.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, and 181 others. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. *arXiv preprint*. ArXiv:2501.12948 [cs].

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bulian, Massimiliano Ciaramita, and Markus Leippold. 2021. CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims. *arXiv preprint*. ArXiv:2012.00614 [cs].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, and 516 others. 2024. The Llama 3 Herd of Models. *arXiv preprint*. ArXiv:2407.21783.

Daniel Fleischer, Moshe Berchansky, Gad Markovits, and Moshe Wasserblat. 2025. SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models. *arXiv* preprint. ArXiv:2502.09390 [cs].

- Qisheng Hu, Quanyu Long, and Wenya Wang. 2025. Decomposition dilemmas: Does claim decomposition boost or burden fact-checking performance? In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 6313–6336, Albuquerque, New Mexico. Association for Computational Linguistics.
- Xinyi Jiang, Guoming Wang, Junhao Guo, Juncheng Li, Wenqiao Zhang, Rongxing Lu, and Siliang Tang. 2024. DIEM: Decomposition-Integration Enhancing Multimodal Insights. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 27294–27303, Seattle, WA, USA. IEEE.
- Ryo Kamoi, Tanya Goyal, Juan Diego Rodriguez, and Greg Durrett. 2023. WiCE: Real-World Entailment for Claims in Wikipedia. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 7561–7583, Singapore. Association for Computational Linguistics.
- Najoung Kim, Ellie Pavlick, Burcu Karagol-Ayan, and Deepak Ramachandran. 2021. Which linguist invented the lightbulb? presupposition verification for question-answering. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 3932–3945.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pages 611–626.
- Xiucheng Lyu, Runcong Zhao, Jiazheng Li, Bin Liang, Min Yang, Lin Gui, and Ruifeng Xu. 2025. Unsupervised fact-checking via recursively verifying presuppositions. *IEEE Transactions on Audio, Speech and Language Processing*, 33:2189–2199.
- Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation. *arXiv* preprint. ArXiv:2305.14251 [cs].
- Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, and 24 others. 2025. Qwen2.5 Technical Report. *arXiv preprint*. ArXiv:2412.15115 [cs].
- Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 2024. Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How

- I learned to start worrying about prompt formatting. *arXiv preprint*. ArXiv:2310.11324 [cs].
- Yixiao Song, Yekyung Kim, and Mohit Iyyer. 2024. VeriScore: Evaluating the factuality of verifiable claims in long-form text generation. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 9447–9474, Miami, Florida, USA. Association for Computational Linguistics.
- Liyan Tang, Philippe Laban, and Greg Durrett. 2024. MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents. *arXiv preprint*. ArXiv:2404.10774 [cs].
- James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a large-scale dataset for fact extraction and VERification. In NAACL-HLT.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 others. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. *arXiv preprint*. ArXiv:2307.09288 [cs].
- Yuxia Wang, Minghan Wang, Hasan Iqbal, Georgi Georgiev, Jiahui Geng, and Preslav Nakov. 2024. OpenFactCheck: Building, Benchmarking Customized Fact-Checking Systems and Evaluating the Factuality of Claims and LLMs. *arXiv preprint*. ArXiv:2405.05583 [cs].
- Shangzi Xue, Zhenya Huang, Jiayu Liu, Binbin Jin, Xin Li, and Qi Liu. Decompose, Analyze and Rethink: Solving Intricate Problems with Human-like Reasoning Cycle.
- Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. 2023. AlignScore: Evaluating Factual Consistency with A Unified Alignment Function. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 11328–11348, Toronto, Canada. Association for Computational Linguistics.
- Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and Kai Chen. 2024. ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 1950–1976, Miami, Florida, USA. Association for Computational Linguistics.

# A Appendix

# A.1 Prompts

# A.1.1 Question Decomposition

You are given a claim, your task is to decompose it into multiple independent and individual questions. DON'T generate any other text than the questions. You are given some examples below and the input claim at the end.

Claim: Other title changes included Lord Steven Regal and The Nasty Boys winning the World Television Championship and the World Tag Team Championship respectively.

#### Questions:

- Did Lord Steven Regal win the World Television Championship?
- Did The Nasty Boys win the World Tag Team Championship?

Claim: The parkway was opened in 2001 after just under a year of construction and almost two decades of community requests.

#### Questions:

- When was the parkway opened?
- How long was the construction period for the parkway?
- How many years of community requests preceded the opening of the parkway?

Claim: Touring began in Europe in April–June with guitarist Paul Gilbert as the opening act, followed by Australia and New Zealand in July, Mexico and South America in late July–August, and concluding in North America in October–November.

#### **Ouestions:**

- When did touring begin in Europe?
- Who was the opening act during the touring in Europe?
- Which months covered the Australia tour?
- Which months covered the New Zealand tour?
- Which months covered the Mexico tour?
- Which months covered the South America tour?
- Which months covered the North America tour?
- Where did the touring conclude?

Claim: In March 2018, the company partnered With Amazon Web Services (AWS) to offer Al-enabled conversational solutions to customers in India.

Ouestions:

- When did the company partner with AWS?
- What was the purpose of the partnership?

Claim: The most significant of these is in Germany, which now has a Yazidi community of more than 200,000 living primarily in Hannover, Bielefeld, Celle, Bremen, Bad Oeynhausen, Pforzheim and Oldenburg.

#### Questions:

- Which country hosts the largest Yazidi community?
- How large is the Yazidi community in Germany?
- In which cities are the Yazidi community in Germany primarily located?

Claim: A previous six-time winner of the Nations' Cup, Sebastian Vettel became Champion of Champions for the first time, defeating Tom Kristensen, who made the final for the fourth time, 2–0.

#### Questions:

- How many times had Sebastian Vettel won the Nations' Cup before?
- What title did Sebastian Vettel achieve for the first time?

- Whom did Sebastian Vettel defeat in the final?
- How many finals had Tom Kristensen reached?
- What was the final score between Sebastian Vettel and Tom Kristensen?

Claim: {{claim}}
Questions:

## A.1.2 Question De-Presupposition

You are given a question that may contain presuppositions—assumptions that are implied but not necessarily true. Your task it to rewrite the question into one or more simpler de-contextualized questions that do not contain these presuppositions. DO NOT generate anything else other than the questions. You are also given some examples below and the input question at the end.

#### Question

Which Bollywood movie has won the Oscar in 1928?

#### Rewritten questions:

- Was there an Oscar in 1928?
- If there was an Oscar in 1928, has any Bollywood movie won that?
- If any Bollywood movie won the Oscar in 1928, which one?

#### Question:

Which english movie was directed by Christopher Nolan?

#### Rewritten questions:

- Is Christopher Nolan a director?
- Has Christopher Nolan directed any english movie?
- If Christopher Nolan has directed any english movie, which one?

## Question:

{{question}}

Rewritten questions:

#### A.1.3 Reasoner: SG1

You are an AI model tasked with verifying claims using zero-shot learning. Your job is to analyze a given claim along with provided evidence (i.e. corpus articles) and decide whether the available evidence would likely support or not support the claim. You are also given some questions that can help you analyze the claim and evidence.

Claim to evaluate:

<claim>

{{CLAIM}}

</claim>

Additional evidence provided:

<corpus\_text>

{{EVIDENCE}}

</corpus\_text>

Questions to consider:

<questions>

{{QUESTIONS}}

</questions>

#### Guidelines:

1. Evaluate the claim only based on the evidence provided.

- 2. It's possible that you are given multiple evidence articles. It is also possible that some of the evidence articles are not relevant to the claim. Use your best judgement to determine which evidence to use and which to ignore.
- 3. Consider answering the questions one by one, before making a final decision.
- 4. If relevant information is not present in the evidence, then it is possible that the claim is not supported by the evidence. Use your best judgement and previous knowledge to make a decision.

After your analysis, output exactly one JSON object with exactly two keys: "reasoning" and "decision". The value associated with "decision" must be exactly one word – either "SUPPORTED" or "NOT\_SUPPORTED" (uppercase, with no additional text). Do not add any markdown formatting, code fences, or additional text. "

"The output must start with an opening curly brace {{ and end with a closing curly brace }}.

Example output format:

{{"reasoning": "Your brief explanation here (one or two sentences).", "decision": "SUPPORTED or NOT\_SUPPORTED"}}

Now, please evaluate the above claim.

#### A.1.4 Reasoner: SG2

You are an AI model tasked with verifying claims using zero-shot learning. Your job is to analyze a given claim along with provided evidence and decide whether the available evidence would likely support or not support the claim. You are also given some questions that can help you analyze the claim and evidence.

#### ### Instructions:

- 1. Evaluate the claim only based on the evidence provided.
- 2. Consider answering the questions one by one, before making a final decision.
- 3. It is possible that some of the questions are not relevant to the claim. Use your best judgement to determine which questions to answer and which to ignore.
- 4. Finally, analyze the claim, questions and evidence together and determine the label that best describes the relationship between the claim and the evidence.
- 5. The meaning of different labels:
- SUPPORTED: The claim is supported by the evidence.
- NOT\_SUPPORTED: The claim is not supported by the evidence.

#### ### Output Format:

After your analysis, output exactly one JSON object with exactly two keys: "reasoning" and "decision". The value associated with "decision" must be exactly one word – either "SUPPORTED" or "NOT\_SUPPORTED" (uppercase, with no additional text). Do not add any markdown formatting, code fences, or additional text. "

"The output must start with an opening curly brace {{ and end with a closing curly brace }}.

Example output format:

{{"reasoning": "Your brief explanation here (one or two sentences).", "decision": "SUPPORTED or NOT\_SUPPORTED"}}

### Input: Evidence:

```
{{EVIDENCE}}

Claim to evaluate:
{{CLAIM}}

Questions to consider:
{{QUESTIONS}}

### Output:
```

#### A.1.5 Reasoner: MiniCheck

Determine whether the provided claim is supported by the corresponding document. You are also given some decomposed questions derived from the claim. Reason through the questions to support your judgment. Support in this context implies that all information presented in the claim is substantiated by the document. If not, it should be considered not supported. Its possible that some of the questions are not relevant to the claim. Use your best judgement to determine which questions to consider and which to ignore. Fall back to the provided document when you are not sure about the question.

```
{{EVIDENCE}}

Claim:
{{CLAIM}}

Questions to consider:
{{QUESTIONS}}
```

Document:

Please assess the claim's support with the document by responding with either "SUPPORTED" or "NOT\_SUPPORTED". Do not generate anything else other than the answer.

Answer:

#### A.1.6 Question Coverage

To find out the coverage of the questions generated in the WiCE dataset, we have used the following prompt. The prompt has access to one subclaim and multiple questions and asks to find out if the subclaim is implicitly or explicitly covered by the questions. In the initial experiments, we have found out that given the evidence during the evaluation performs better due to the nominal references present in the subclaim or questions.

Given a claim, evidence, and a list of questions, analyze whether the questions collectively are sufficient to verify or refute the entire claim.

#### ### Instructions

- We are looking for coverage of the claim not completeness of the questions. So, if some questions are not relevant to the claim, that's fine. But if the relevant questions do not cover the whole claim, then the coverage is not good.
- The question does not need to ask the specific claim explicitly. If answering the question would verify the claim, then it covers the claim.

- It is possible that multiple questions together cover the claim. It is not necessary that the claim is covered by a single question.
- If a question and claim refer to similar, but non-identical concepts, use the provided evidence to determine whether the question and claim are referring to the same concept or not. For example, the claim may refer to "the machine learning technique," while the question may ask about "the supervised learning technique." Because the questions were generated based on the provided evidence, consider this evidence when determining your final answer.
- Begin by providing 1-2 sentences explaining your reasoning for the coverage of the claim.
- Afterward, output yes if the questions cover the claim completely, or no if they do not.
- Structure your final response into two sections:
  - EXPLANATION: (your reasoning in 1-2 sentences)
- ANSWER: (Yes if the questions cover the claim completely, or No if they do not)

```
### Evidence
{{evidence}}

### Claim
{{claim}}

### Questions
{{questions}}
```

# A.2 Experimental Setup

We have used Qwen/QwQ-32B and o4-mini as the reasoner models. For the QwQ model, we have used VLLM (Kwon et al., 2023) for inference (one H100) and the OpenAI API.Both models were run with the default temperature settings, while for o4-mini, we utilized the "high" reasoning setup. We performed three runs to report the mean performance with standard deviation for the BioNLI-300 and WiCE datasets. We conducted two runs for the BioNLI full dataset and o4-mini results due to high computation time and API costs.

# A.3 Effect of Prompt Variance in Claim Verification

Sclar et al. (2024) found that even large models are susceptible to prompt variance, to confirm that on our task we have used 3 different prompts.

**MiniCheck Prompt:** We have adopted the Tang et al. (2024)'s verification prompt on this version. The exact prompt is reported on App. A.1.5.

**Structured Guidance:** To confirm the prompt variance, we have used 2 different structured guidance prompts with one minimal change – reorganization of the sections. Both prompts are reported on App. A.1.3 and App. A.1.4, both of those prompts

| Prompt     | BAcc          | Supported | Refuted |
|------------|---------------|-----------|---------|
| BioNLI-300 |               |           |         |
| SG2        | 70.83 (-3.50) | 87.33     | 54.33   |
| SG1        | 68.33 (-6.00) | 86.67     | 50.00   |
| MiniCheck  | 74.33         | 74.00     | 74.67   |
| WiCE       |               |           |         |
| SG2        | 79.35 (-4.60) | 91.89     | 66.80   |
| SG1        | 79.08 (-4.87) | 94.59     | 63.56   |
| MiniCheck  | 83.95         | 82.88     | 85.02   |

Table 3: Comparison of different prompts – SG1 - App. A.1.3, SG2 - App. A.1.4, MiniCheck - App. A.1.5. o4-mini with high-reasoning setup was used as reasoner (Average score is reported over two runs)

were written by the authors and refined using the BioNLI validation set. We call them "SG1" and "SG2" respectively.

The results for different prompts are shown on the Table 3. The results show that the claim verification task, like many other tasks (Zhuo et al., 2024), is susceptible to the prompt (3-6%). The difference between the SG1 and SG2 is more shocking, as those two prompts are basically the same, with some minor reorganization of sections. Our method can effectively mitigate this prompt sensitivity of a reasoner model.

#### A.4 Additional Results

The full result of the experiment described in §3.3 is shown on the Table 4. In addition to the previous datasets, we have also provided results on the BioNLI-300 dataset to include the results for o4-min i as reasoner.

#### A.5 Qualitative Analysis

One of the success cases from the BioNLI dataset is shown in Table 6, while a failure case is presented in Table 7. The qualitative analysis reveals that, in some instances, the model overlooks portions of the decomposed questions (Table 7), leading to incorrect conclusions despite otherwise relevant evidence.

#### A.6 Dataset

Full dataset statistics of WiCE, BioNLI and BioNLI-300 is provided on Table 8.

#### A.7 Results on Fever Dataset

We additionally report results on the FEVER test dataset (Thorne et al., 2018). Notably, FEVER was

| Prompt                 | Reasoner               | Question Decomposer    | De-<br>Presupposition | BAcc                                 | Supported                            | Refuted                              |  |
|------------------------|------------------------|------------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| BioNLI-FU              | BioNLI-FULL            |                        |                       |                                      |                                      |                                      |  |
| SG2                    | Qwen3-32B              | Qwen3-32B              | $\checkmark$          | $76.79 \pm 0.16$                     | $90.37 \pm 0.72$                     | $63.21 \pm 0.39$                     |  |
| SG2                    | Qwen3-32B              | Qwen3-32B              | ×                     | $75.92 \pm 0.16$                     | $89.83 \pm 0.09$                     | $62.00 \pm 0.42$                     |  |
| SG2                    | Qwen3-32B              | -                      | -                     | $74.10 \pm 0.04$                     | $89.65 \pm 0.27$                     | $58.54 \pm 0.19$                     |  |
| SG2                    | QwQ-32B                | QwQ-32B                | $\checkmark$          | $76.57 \pm 0.19$                     | $90.10 \pm 0.27$                     | $63.04 \pm 0.11$                     |  |
| SG2                    | QwQ-32B                | QwQ-32B                | ×                     | $76.57 \pm 0.08$                     | $89.92 \pm 0.09$                     | $63.23 \pm 0.08$                     |  |
| SG2                    | QwQ-32B                | -                      | -                     | $73.74 \pm 0.10$                     | $91.49 \pm 0.14$                     | $55.99 \pm 0.06$                     |  |
| SG1                    | Qwen3-32B              | Qwen3-32B              | $\checkmark$          | $76.16 \pm 0.01$                     | $87.49 \pm 0.18$                     | $64.84 \pm 0.15$                     |  |
| SG1                    | Qwen3-32B              | Qwen3-32B              | ×                     | $75.38 \pm 0.31$                     | $87.76 \pm 0.72$                     | $63.00 \pm 0.10$                     |  |
| SG1                    | Qwen3-32B              | -                      | _                     | $71.49 \pm 0.11$                     | $89.87 \pm 0.41$                     | $53.10 \pm 0.18$                     |  |
| SG1                    | QwQ-32B                | QwQ-32B                | $\checkmark$          | $77.73 \pm 0.06$                     | $87.04 \pm 0.00$                     | $68.41 \pm 0.11$                     |  |
| SG1                    | QwQ-32B                | QwQ-32B                | ×                     | $76.72 \pm 0.14$                     | $87.98 \pm 0.05$                     | $65.46 \pm 0.32$                     |  |
| SG1                    | QwQ-32B                | -                      | -                     | $72.34 \pm 0.26$                     | $93.92 \pm 0.32$                     | $50.76 \pm 0.20$                     |  |
| MiniCheck              | Qwen3-32B              | Qwen3-32B              | ✓                     | $77.60 \pm 0.10$                     | $81.14 \pm 0.14$                     | $74.05 \pm 0.33$                     |  |
| MiniCheck              | Qwen3-32B<br>Qwen3-32B | Qwen3-32B              | ×                     | $76.34 \pm 0.32$                     | $80.65 \pm 0.54$                     | $72.03 \pm 0.33$<br>$72.03 \pm 0.10$ |  |
| MiniCheck              | Qwen3-32B<br>Qwen3-32B | Qwell3-32D             |                       | $76.34 \pm 0.32$<br>$76.29 \pm 0.28$ | $80.03 \pm 0.34$<br>$80.11 \pm 0.09$ | $72.03 \pm 0.10$<br>$72.46 \pm 0.48$ |  |
| MiniCheck              | Qwell3-32B<br>QwQ-32B  | QwQ-32B                | -<br>✓                |                                      | $86.45 \pm 0.14$                     | $72.40 \pm 0.48$<br>$70.18 \pm 0.16$ |  |
|                        |                        |                        |                       | $78.32 \pm 0.15$                     |                                      |                                      |  |
| MiniCheck              | QwQ-32B                | QwQ-32B                | ×                     | $78.04 \pm 0.14$                     | $86.54 \pm 0.32$                     | $69.54 \pm 0.03$                     |  |
| MiniCheck              | QwQ-32B                | -                      | -                     | $77.58 \pm 0.14$                     | $84.92 \pm 0.23$                     | $70.23 \pm 0.06$                     |  |
| BioNLI-300             |                        |                        |                       |                                      |                                      |                                      |  |
| SG2                    | o4-mini                | o4-mini                | $\checkmark$          | $74.83 \pm 0.50$                     | $85.00 \pm 1.00$                     | $64.67 \pm 0.00$                     |  |
| SG2                    | o4-mini                | o4-mini                | ×                     | $71.33 \pm 0.33$                     | $85.67 \pm 0.33$                     | $57.00 \pm 1.00$                     |  |
| SG2                    | o4-mini                | -                      | -                     | $70.83 \pm 0.17$                     | $87.33 \pm 0.00$                     | $54.33 \pm 0.33$                     |  |
| SG2                    | QwQ-32B                | QwQ-32B                | $\checkmark$          | $73.44 \pm 1.40$                     | $85.56 \pm 0.83$                     | $61.33 \pm 1.96$                     |  |
| SG2                    | QwQ-32B                | QwQ-32B                | ×                     | $72.56 \pm 1.50$                     | $86.44 \pm 1.13$                     | $58.67 \pm 1.96$                     |  |
| SG2                    | QwQ-32B                | -                      | -                     | $69.11 \pm 0.42$                     | $88.00 \pm 0.54$                     | $50.22 \pm 0.31$                     |  |
| SG1                    | o4-mini                | o4-mini                | $\checkmark$          | $73.00 \pm 0.33$                     | $82.33 \pm 1.00$                     | $63.67 \pm 0.33$                     |  |
| SG1                    | o4-mini                | o4-mini                | ×                     | $71.67 \pm 0.00$                     | $83.33 \pm 0.67$                     | $60.00 \pm 0.67$                     |  |
| SG1                    | o4-mini                | <u>-</u>               | -                     | $68.33 \pm 0.00$                     | $86.67 \pm 0.00$                     | $50.00 \pm 0.00$                     |  |
| SG1                    | QwQ-32B                | QwQ-32B                | $\checkmark$          | $75.00 \pm 2.18$                     | $86.00 \pm 0.54$                     | $64.00 \pm 3.81$                     |  |
| SG1                    | QwQ-32B                | QwQ-32B                | ×                     | $74.11 \pm 1.29$                     | $86.44 \pm 0.83$                     | $61.78 \pm 1.75$                     |  |
| SG1                    | QwQ-32B                | ~ ~ ~ 32B              | -                     | $68.44 \pm 0.68$                     | $92.44 \pm 0.83$                     | $44.44 \pm 0.63$                     |  |
| MiniCheck              | o4-mini                | o4-mini                | $\checkmark$          | $74.67 \pm 0.33$                     | $79.00 \pm 1.00$                     | $70.33 \pm 0.33$                     |  |
| MiniCheck              | o4-mini                | o4-mini                | ×                     | $71.83 \pm 0.17$                     | $79.00 \pm 0.33$                     | $64.67 \pm 0.00$                     |  |
| MiniCheck              | o4-mini                | O <del>T</del> -IIIIII |                       | $74.33 \pm 0.00$                     | $74.00 \pm 0.00$                     | $74.67 \pm 0.00$                     |  |
| MiniCheck              |                        | OwO 22P                | -<br>✓                | $74.33 \pm 0.00$<br>$75.11 \pm 1.10$ | $82.44 \pm 0.63$                     | $67.78 \pm 1.57$                     |  |
| MiniCheck              | QwQ-32B                | QwQ-32B                |                       |                                      |                                      |                                      |  |
|                        | QwQ-32B                | QwQ-32B                | ×                     | $74.33 \pm 1.25$                     | $83.33 \pm 1.63$                     | $65.33 \pm 0.94$                     |  |
| MiniCheck              | QwQ-32B                | -                      | -                     | $73.33 \pm 0.98$                     | 82.67 ± 1.09                         | $64.00 \pm 1.44$                     |  |
| WiCE                   |                        |                        |                       |                                      |                                      |                                      |  |
| SG2                    | o4-mini                | o4-mini                | $\checkmark$          | $82.54 \pm 1.46$                     | $90.99 \pm 0.90$                     | $74.09 \pm 2.02$                     |  |
| SG2                    | o4-mini                | o4-mini                | ×                     | $83.32 \pm 0.17$                     | $92.34 \pm 1.35$                     | $74.29 \pm 1.01$                     |  |
| SG2                    | o4-mini                | -                      | -                     | $79.35 \pm 0.00$                     | $91.89 \pm 0.00$                     | $66.80 \pm 0.00$                     |  |
| SG2                    | QwQ-32B                | QwQ-32B                | $\checkmark$          | $79.03 \pm 0.00$                     | $85.59 \pm 0.00$                     | $72.47 \pm 0.00$                     |  |
| SG2                    | QwQ-32B                | QwQ-32B                | ×                     | $79.32 \pm 0.49$                     | $84.68 \pm 0.74$                     | $73.95 \pm 1.38$                     |  |
| SG2                    | QwQ-32B                | -                      | -                     | $76.36 \pm 0.27$                     | $86.19 \pm 0.42$                     | $66.53 \pm 0.19$                     |  |
| SG1                    | o4-mini                | o4-mini                | $\checkmark$          | $83.07 \pm 0.53$                     | $91.44 \pm 0.45$                     | $74.70 \pm 0.61$                     |  |
| SG1                    | o4-mini                | o4-mini                | ×                     | $83.52 \pm 0.33$                     | $92.34 \pm 0.45$                     | $74.70 \pm 0.20$                     |  |
| SG1                    | o4-mini                | -                      | -                     | $79.08 \pm 0.00$                     | $94.59 \pm 0.00$                     | $63.56 \pm 0.00$                     |  |
| SG1                    | QwQ-32B                | QwQ-32B                | $\checkmark$          | $76.42 \pm 0.92$                     | $83.48 \pm 1.12$                     | $69.37 \pm 1.99$                     |  |
| SG1                    | QwQ-32B                | QwQ-32B                | ×                     | $78.23 \pm 0.64$                     | $85.89 \pm 0.42$                     | $70.58 \pm 1.66$                     |  |
| SG1                    | QwQ-32B<br>QwQ-32B     | QWQ-32D                |                       | $73.41 \pm 0.56$                     | $91.89 \pm 0.74$                     | $54.93 \pm 0.69$                     |  |
|                        |                        | o4 mini                | -                     |                                      |                                      |                                      |  |
| MiniCheck<br>MiniCheck | o4-mini                | o4-mini                | <b>√</b>              | $84.74 \pm 0.40$                     | $86.49 \pm 0.00$                     | $83.00 \pm 0.81$                     |  |
| MiniCheck              | o4-mini                | o4-mini                | ×                     | $84.09 \pm 0.86$                     | $85.59 \pm 0.90$                     | $82.59 \pm 0.81$                     |  |
| MiniCheck              | o4-mini                | -                      | -                     | $83.95 \pm 0.00$                     | $82.88 \pm 0.00$                     | $85.02 \pm 0.00$                     |  |
| MiniCheck              | QwQ-32B                | QwQ-32B                | $\checkmark$          | $82.25 \pm 0.62$                     | $82.58 \pm 1.12$                     | $81.92 \pm 0.83$                     |  |
| MiniCheck              | QwQ-32B                | QwQ-32B                | ×                     | $81.72 \pm 0.50$                     | $82.88 \pm 1.27$                     | $80.57 \pm 0.33$                     |  |
| MiniCheck              | QwQ-32B                | -                      | _                     | $80.70 \pm 0.30$                     | $82.58 \pm 0.42$                     | $78.81 \pm 0.50$                     |  |

Table 4: Detailed Results on the WiCE, BioNLI Full and BioNLI-300 dataset.

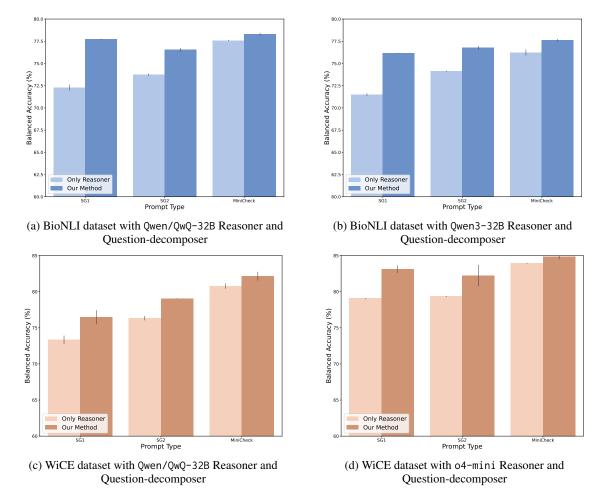


Figure 4: Balanced accuracy on the BioNLI (a, b) and WiCE (c, d) benchmarks under three prompt variants. Across each dataset, prompt variant, and backbone LLM, our method yields consistent and significant gains over the single-reasoner baseline.

| Prompt    | De-Presupposition | Answer Module | BAcc             |
|-----------|-------------------|---------------|------------------|
| MiniCheck | ×                 | ✓             | $71.33 \pm 0.00$ |
| MiniCheck | ×                 | ×             | $71.83 \pm 0.17$ |
| MiniCheck | $\checkmark$      | $\checkmark$  | $73.50 \pm 0.17$ |
| MiniCheck | $\checkmark$      | ×             | $74.67 \pm 0.33$ |
| SG1       | ×                 | ✓             | $69.83 \pm 0.83$ |
| SG1       | ×                 | ×             | $71.67 \pm 0.00$ |
| SG1       | $\checkmark$      | $\checkmark$  | $73.33 \pm 0.67$ |
| SG1       | $\checkmark$      | ×             | $73.00 \pm 0.33$ |
| SG2       | ×                 | ✓             | $69.67 \pm 0.67$ |
| SG2       | ×                 | ×             | $71.33 \pm 0.33$ |
| SG2       | $\checkmark$      | $\checkmark$  | $71.67 \pm 1.00$ |
| SG2       | $\checkmark$      | ×             | $74.83 \pm 0.50$ |

Table 5: Results (with standard deviation) of using explicit answer module with our method.

originally developed as a retrieval and coarse verification benchmark rather than a fine-grained verification task. For example, one of the test claims—"Hearts is a musical composition by Minogue"—lacks the complexity necessary for decomposition-based reasoning. Furthermore, as shown in Table 8,

the average claim length is only 8 words, indicating that the claims are already highly atomic and offer limited opportunity for further decomposition.

As shown in Table 9, our decomposition and de-presupposition pipeline does not yield significant improvements on this dataset, highlighting the importance of task complexity needed in benefiting from structured reasoning approaches. Unlike FEVER, most claims in real-world and scientific domains are highly complex, often requiring multi-hop reasoning. This underscores the necessity of decomposition-based approaches for effective claim verification in such settings.

| Label                                 | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Claim                                 | We conclude that the reduction in furosemide stimulated renin release by indomethacin is due to renal cyclo-oxygenase inhibition which is reflected in decreased excretion rates of hydrolysis products of renal eicosanoids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Decomposed<br>Questions               | <ol> <li>What is the cause of the reduction in furosemide-stimulated renin release?</li> <li>What is the effect of indomethacin on furosemide-stimulated renin release?</li> <li>What is reflected in decreased excretion rates of hydrolysis products of renal eicosanoids?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Presupposition<br>free Ques-<br>tions | 1: If the reduction in furosemide-stimulated renin release has a cause, what is the cause?  2: What is the effect of indomethacin on furosemide-stimulated renin release?  3: If so, has anything been reflected in those decreased excretion rates?  4: What is reflected in decreased excretion rates of hydrolysis products of renal eicosanoids?  5: If indomethacin has an effect on furosemide-stimulated renin release, what is the effect?  6: Does furosemide stimulate renin release?  7: If there is a reduction in furosemide-stimulated renin release, does it have a cause?  8: If yes, what is reflected in them?  9: What is the cause of the reduction in furosemide-stimulated renin release?  10: If furosemide stimulates renin release, does indomethacin have an effect on that release?  11: Do hydrolysis products of renal eicosanoids have excretion rates that can decrease?  12: Is there a reduction in furosemide-stimulated renin release?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reasoning                             | First, I need to check the document: The study involved giving indomethacin to normal volunteers and then measuring responses to furosemide. The key points from the document are:  - Indomethacin reduced serum thromboxane B2 (TXB2), which is a platelet product, but that's not directly about the kidney. However, the document mentions that renal prostacyclin and thromboxane A2 synthesis are limited to the cortex. So maybe the eicosanoids in the kidney are affected too.  - The study found that both basal and furosemide-stimulated plasma renin activity were reduced after indomethacin. Also, the exerction rates of 6-keto-PGFI alpha (a) grostacyclin metabolite) and TXB2 (though TXB2 here might be from the kidney, but earlier they said TXB2 is platelet-derived, so maybe the renal TXB2 is different? Wait, the document says "the transient increase in excretion rates of 6-keto-PGFI alpha and TXB2" were storeduced. So maybe the TXB2 here refers to renal, not platelet? Hmm, that's a bit confusing because earlier they said serum TXB2 was from platelets. Maybe the excretion in urine includes renal sources? The document says "excretion rates" so that's probably urine. So the renal eicosanoids' hydrolysis products would be in urine. The claim states that the decrease in renin release is due to cyclo-oxygenase inhibition (which indomethacin does) and this is reflected in decreased excretion of phydrolysis products. The document does mention that after indomethacin, the excretion of 6-keto-PGFI alpha and TXB2 (the hydrolysis products) decreased, along with the renin. Since prostacyclin and TXA2 are eicosanoids made via cyclo-oxygenase, their hydrolysis products being reduced would indicate that indomethacin (a COX inhibitor) is blocking their synthesis. Thus, the reduced renin release is linked to the inhibition of these eicosanoids, which are part of renal cyclo-oxygenase products.  Looking at the questions:  1. The cause of the reduction in renin release would be indomethacin's effect via COX inhibition. The document says that |

Table 6: One of the examples from the BioNLI dataset where the reasoner correctly verified the claim as SUP-PORTED.

| Label                                 | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Claim                                 | We conclude that ACTH hypersecretion after CRH-mediated stimuli, including naloxone, is an inherent, but variable, feature of DM, caused by expression of the genetic mutation at the anterior pituitary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Decomposed<br>Questions               | 1: Where is the genetic mutation expressed that leads to ACTH hypersecretion in DM? 2: What is an example of a CRH-mediated stimulus mentioned in the claim? 3: What causes the ACTH hypersecretion in DM? 4: What type of stimuli trigger ACTH hypersecretion in DM? 5: What is an inherent but variable feature of DM?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Presupposition<br>free Ques-<br>tions | - 1: If DM exists, does it have any features?  2: If there are stimuli that trigger ACTH hypersecretion in DM, what type are they?  3: If DM experiences ACTH hypersecretion, are there any stimuli that trigger it?  4: If ACTH hypersecretion occurs in DM, what causes it?  5: What is an example of a CRH-mediated stimulus mentioned in the claim?  6: If DM has features, does it have any inherent features?  7: What type of stimuli trigger ACTH hypersecretion in DM?  8: If DM exists, does ACTH hypersecretion occur in it?  9: If DM has an inherent but variable feature, which one is it?  10: If DM has inherent features, are any of them variable?  11: What causes the ACTH hypersecretion in DM?  12: Does DM experience ACTH hypersecretion?  13: If such a mutation exists, is it expressed in a specific location?  14: Does DM exist?  15: Where is the genetic mutation expressed that leads to ACTH hypersecretion in DM?  16: If the claim mentions any CRH-mediated stimuli, what is an example?  17: Does a genetic mutation lead to ACTH hypersecretion in DM?  18: If it is expressed in a specific location, where is that?  19: What is an inherent but variable feature of DM?  20: Does the claim mention any CRH-mediated stimuli?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reasoning                             | First, I'll look at the document. The study shows that in DM patients, their basal ACTH levels are twice as high as controls, and their ACTH responses to naloxone (a CRH stimulator) are four times higher. The cortisol responses were similar, but ACTH was definitely higher. They also mention that 19 out of 36 patients were hyperresponders, and some had reproducible responses.  Now, looking at the questions:  1. Does DM have features? The document does talk about ACTH hypersecretion as a feature, so yes. 2. The stimuli are CRH-mediated, like naloxone. The document mentions naloxone as a CRH stimulator. 3. Yes, CRH-mediated stimuli trigger ACTH hypersecretion in DM. 4. The cause according to the claim is the genetic mutation in the anterior pituitary. The document says they "previously showed" CRH-mediated stimuli cause this, but does it mention the genetic mutation's role? The document here doesn't explicitly state the genetic mutation is location. Wait, the claim says it's caused by the mutation's expression in the anterior pituitary. The document's current evidence is about the response to naloxone and ACTH levels but doesn't mention the genetic mutation's expression site. Hmm, that's a problem. The study might be part of their previous work, but the current document doesn't specify the cause as the genetic mutation in the anterior pituitary.  Questions 5-12 are missing  Looking at the questions 13,14,15,17,18: The claim says the cause is the genetic mutation expressed in the anterior pituitary. The document here doesn't mention the location of the mutation's expression. The study talks about the effect (ACTH levels) but not the exact mechanism's location. So the part about the anterior pituitary might not be supported by the provided document.  Questions 19,20 are missing  The claim also says it's an inherent feature. The document does say that DM patients have higher ACTH responses consistently, even in some repeated tests, so that's inherent. The variability is mentioned with hyperresponders (19 out of 36), |

Table 7: One of the examples from the BioNLI dataset where the reasoner incorrectly verified the claim as NOT-SUPPORTED though the claim is originally SUPPORTED.

| Dataset                         | Samples | Supported | Defuted | Average # of Words |          |
|---------------------------------|---------|-----------|---------|--------------------|----------|
| Dataset                         | Samples | Supported | Refuted | Claim              | Evidence |
| WiCE (Kwon et al., 2023)        | 358     | 247       | 111     | 24                 | 1316     |
| BioNLI (Bastan et al., 2022)    | 5073    | 3962      | 1111    | 34                 | 187      |
| BioNLI-300 (sampled)            | 300     | 150       | 150     | 35                 | 185      |
| FEVER (Diggelmann et al., 2021) | 6605    | 3305      | 3300    | 8                  | 305      |

Table 8: Statistics of different dataset used in the study. Following previous papers (Tang et al., 2024; Kamoi et al., 2023), we have converted the WiCE dataset to binary by assuming partially supported as refuted.

| Prompt    | Reasoner  | Question Decomposer | De-<br>Presupposition | BAcc             | Supported        | Refuted          |
|-----------|-----------|---------------------|-----------------------|------------------|------------------|------------------|
| SG2       | Qwen3-32B | Qwen3-32B           | ✓                     | $95.27 \pm 0.07$ | $93.90 \pm 0.23$ | $96.64 \pm 0.09$ |
| SG2       | Qwen3-32B | Qwen3-32B           | ×                     | $95.49 \pm 0.11$ | $94.55 \pm 0.18$ | $96.42 \pm 0.03$ |
| SG2       | Qwen3-32B | -                   | ×                     | $95.47 \pm 0.04$ | $94.49 \pm 0.00$ | $96.44 \pm 0.08$ |
| SG2       | QwQ-32B   | QwQ-32B             | $\checkmark$          | $95.44 \pm 0.17$ | $94.25 \pm 0.24$ | $96.62 \pm 0.11$ |
| SG2       | QwQ-32B   | QwQ-32B             | ×                     | $95.42 \pm 0.07$ | $94.24 \pm 0.05$ | $96.61 \pm 0.09$ |
| SG2       | QwQ-32B   | -                   | ×                     | $95.56 \pm 0.02$ | $94.70 \pm 0.09$ | $96.42 \pm 0.06$ |
| SG1       | Qwen3-32B | Qwen3-32B           | $\checkmark$          | $95.18 \pm 0.17$ | $93.92 \pm 0.18$ | $96.44 \pm 0.17$ |
| SG1       | Qwen3-32B | Qwen3-32B           | ×                     | $95.28 \pm 0.03$ | $94.22 \pm 0.06$ | $96.33 \pm 0.00$ |
| SG1       | Qwen3-32B | -                   | ×                     | $95.62 \pm 0.05$ | $95.08 \pm 0.08$ | $96.17 \pm 0.02$ |
| SG1       | QwQ-32B   | QwQ-32B             | $\checkmark$          | $95.31 \pm 0.08$ | $94.30 \pm 0.08$ | $96.33 \pm 0.09$ |
| SG1       | QwQ-32B   | QwQ-32B             | ×                     | $95.49 \pm 0.06$ | $94.58 \pm 0.09$ | $96.39 \pm 0.03$ |
| SG1       | QwQ-32B   | -                   | ×                     | $95.64 \pm 0.05$ | $95.40 \pm 0.00$ | $95.88 \pm 0.09$ |
| MiniCheck | Qwen3-32B | Qwen3-32B           | $\checkmark$          | $95.00 \pm 0.11$ | $93.22 \pm 0.21$ | $96.77 \pm 0.02$ |
| MiniCheck | Qwen3-32B | Qwen3-32B           | ×                     | $95.36 \pm 0.08$ | $94.21 \pm 0.11$ | $96.52 \pm 0.06$ |
| MiniCheck | Qwen3-32B | -                   | ×                     | $95.41 \pm 0.01$ | $93.96 \pm 0.11$ | $96.85 \pm 0.09$ |
| MiniCheck | QwQ-32B   | QwQ-32B             | $\checkmark$          | $95.40 \pm 0.02$ | $94.13 \pm 0.00$ | $96.67 \pm 0.03$ |
| MiniCheck | QwQ-32B   | QwQ-32B             | ×                     | $95.47 \pm 0.05$ | $94.40 \pm 0.03$ | $96.53 \pm 0.08$ |
| MiniCheck | QwQ-32B   | -                   | ×                     | $95.40 \pm 0.03$ | 94.16 ± 0.06     | $96.64 \pm 0.00$ |

Table 9: Results (with standard deviation) on the FEVER (Thorne et al., 2018) dataset. Due to the size of the dataset, we have reported scores over two runs.