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Abstract

To study computational models for language
acquisition, we propose an interactive com-
putational framework that utilizes a miniature
language acquisition dataset in a controlled en-
vironment. In this framework, a neural learner
model interacts with a teacher model that pro-
vides corrective feedback. Within this frame-
work, we investigate various corrective feed-
back strategies, specifically focusing on re-
formulations and their effect on the learner
model during their interactions. We design
experimental settings to evaluate the learner’s
production of syntactically and semantically
correct linguistic utterances and perception
of concepts and word-meaning associations.
These results offer insights into the effective-
ness of different feedback strategies in lan-
guage acquisition using artificial neural net-
works. The outcome of this research is estab-
lishing a framework with a dataset for the sys-
tematic evaluation of various aspects of lan-
guage acquisition in a controlled environment.

1 Introduction

Understanding how children form associations be-
tween linguistic words to some situational input or
referent within an uncertain environment where mul-
tiple referents could be related to the same word is
a topic that has been studied in language acquisi-
tion (Quine, 1960). Cross-situational learning is a pow-
erful mechanism for learning co-occurrence statistics
between words and referent objects across multiple ex-
posures (Gleitman, 1990; Pinker, 2013). Studies of
cross-situational learning in both adults (Yu and Smith,
2007; Smith et al., 2011) and children (Suanda et al.,
2014; Smith and Yu, 2008) show how the associa-
tion between words and meaning is learned at differ-
ent stages of language development. However, some
of these studies on cross-situational learning focus on
the child’s learning of these word-meaning associations
without any form of feedback (Monaghan et al., 2021).

Feedback, in the form of social interactions, is shown
to enhance children’s language development (Kuhl
et al., 2003; Sachs et al., 1981; Krashen et al., 1983).
In language acquisition studies, most commonly in sec-
ond language acquisition literature, an interaction is

Parisa Kordjamshidi
Computer Science and Engineering
Michigan State University
kordjams@msu.edu

viewed as a negotiation for meaning where two agents
“negotiate” or agree upon the meaning of some ob-
ject during a conversation (Long, 1981; Clark, 1996).
Corrective Feedback is one form of interaction where
an adult, i.e. parent or teacher, analyzes the linguis-
tic generation of a child and provides some form of
response intended to adjust or update the child’s lin-
guistic knowledge. Although the impact of providing
corrective feedback is a controversial topic, many stud-
ies supports its influence on language learning even
in first language acquisition (Hiller, 2016; Chouinard
and Clark, 2003; Schoneberger, 2010). In a social con-
text, commonly within a classroom setting, several ap-
proaches for corrective feedback are utilized such as
explicit correction, recast or reformulations, clarifica-
tion request, metalinguistic feedback, elicitation, and
repetition (Lyster and Ranta, 1997). For the scope of
this paper, we will focus on reformulations as our com-
putational approach to corrective feedback.

Cross-situational learning has been used to address
multiple tasks like probabilistic word-meaning learning
with symbolic situation representations (Fazly et al.,
2010), word-meaning learning with embodied sys-
tems (Yu and Ballard, 2004), and word-meaning asso-
ciations from visual perceptual representations as in-
puts (Juven and Hinaut, 2020). Also, several studies
have explored learning settings that simulate interac-
tions between teacher and learner conversations with k-
Nearest Neighbor models for word learning (Belpaeme
and Morse, 2012) and probabilistic models with cor-
rections (Angluin and Becerra-Bonache, 2017). Other
models have studied the acquisition of semantic knowl-
edge through some form of feedback provided via
a reward function in a reinforcement learning set-
ting (Nikolaus and Fourtassi, 2021b,a). Other stud-
ies have explored the language acquisition process as
a game where two agents observe referents in a scene
and both attempt to name it (Steels, 1995).

Building neural computational models for Language
Acquisition based has been practiced in the related lit-
erature (Portelance and Jasbi, 2023; Frank et al., 2019).
However, one issue that these models present is the
requirement of large amount of linguistic data, most
times larger than what humans are exposed to through
out their entire lifetime. Also, the architecture design
of these models can have innate biases that makes re-
lating their outcome analysis to human language acqui-
sition theories challenging (Baroni, 2022). In order to
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establish a fair and accurate comparison between neu-
ral models and human learners, it is required to simu-
late learning scenarios where the quantity of data, in-
put modalities, and data distributions resemble human-
level abilities (Warstadt and Bowman, 2024).

In this paper, we use a learning scenario that explores
neural computational models for language acquisition
in a teacher-learner interactive cross-situational learn-
ing framework. This framework follows a similar
structure as the one presented in Angluin and Becerra-
Bonache (2017) which uses a Miniature Language Ac-
quisition dataset where the environment contains log-
ical representation of objects and the model learns to
generate linguistic utterances that describe these ob-
jects. We extend their work by using recurrent neu-
ral networks as the learner rather than a probabilis-
tic graphical model. We train small models from
scratch, without any prior knowledge, that resembles
early stages of concept learning and language acquisi-
tion.

Also, we examine various corrective feedback strate-
gies and their impact on the learner model’s learning
trajectory. The learner is evaluated at a production level
based on utterance semantics and its ability to gener-
ate all possible explanations, as well as a perception
level, referring to the knowledge acquired about con-
cepts and relationships. Figure 1 shows how interac-
tion is established, where each interaction starts with
a learner model generating syntactically and seman-
tically appropriate utterances corresponding to the at-
tributes and relationships within a given situation, rep-
resented formally in a formal predicate-argument form.
The teacher then analyzes the utterance, compares the
utterance’s formal representation to the situation’s for-
mal representation, and provides another utterance with
a similar formal representation to the situation.

Environment

Formal Formal
representation representation

Situation

Utterance

A 4

Learner Teacher

Feedback

Figure 1: Teacher-Learner Interaction model. This
framework has a teacher and learner model interact
in an environment with shared situations. The learner
model attempts to describe the situation, and then the
teacher evaluates the description and provides feedback
to the learner.

The main contributions of this work are as follows:
1) Extending Miniature Language Acquisition compu-
tational framework with neural learner models; 2) Pro-
viding evaluation datasets and metrics for utterance

generation (production-level) and concept evaluation
(perception-level); 3) Incorporating various corrective
feedback strategies in the form of interactions with an
oracle that evaluates the logical semantics.

2 Miniature Language Acquisition
Dataset

Miniature Language Acquisition (MiLA) is a task that
consists on the learning of a natural language from
sentence-picture pairs, where each “picture” or scene
is composed of geometric shapes with different proper-
ties (Feldman et al., 1990). Similar to the setup in (An-
gluin and Becerra-Bonache, 2017), we create a learning
setting in which the learner receives a formal represen-
tation of the environment, instead of actual visual in-
put, and generates natural language utterances that ex-
plain the environment. In our experiments, we only
use English natural language utterances. The dataset
includes pairs of formal representations of various situ-
ations with their respective set of valid linguistic utter-
ances. There are 23,328 unique situations, where each
situation refers to two objects with all three attributes
and relates to 113,064 unique utterances. Every situa-
tion is paired with at most 40 utterances.

2.1 Situation Representation

We define a formal representation of objects, their
properties, and their relations within the environment
using a predicate-argument structure referred to as a sit-
uation s. The s represents the full formal representation
of the situation but we also use a partial one referred
to as m. Each predicate p can have one or two argu-
ments representing objects, denoted by ¢. For exam-
ple, p(t1) represents a single-argument predicate, and
p(t1,t2) represents a two-argument predicate.

Single-argument predicates describe the properties
of an object including {shape, size, color} whereas
two-argument predicates describe the relationships be-
tween objects including {left, above}. Shape predi-
cates include hexagon (hel), star (stl), triangle (¢r1),
square (sql), circle (ci1), and ellipse (el1). Colors in-
clude red (rel), blue (bl1), yellow (yel), orange (orl),
green (grl), and purple (pul). Sizes include small
(sml), medium (mel), and big (bil). Relations in-
clude left (le2) and above (ab2). Although the rela-
tion predicates are limited to two relation types, these
are sufficiently expressive for two additional relations:
right and below. For utterances that include right and
below, their formal situation will use the predicates [e2
and ab2 respectively while the order of their arguments
reflects the actual relationship.

Each full situation in the dataset includes all the
properties of two objects and their relation. A par-
tial situation representation can include a subset of the
predicates. However, a valid partial situation must have
at least one shape predicate to be able to refer to at least
one object. We refer to the object types, attributes, and
their relations as concepts to be learned. We gener-
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ate all possible formal situations based on the possible
combinations of the concepts given a set of templates.
An example of a formal situation is:

sml(tl),bll(tl),cil(tl),
ab2(tl,t2),
bil(t2),rel(t2),sgl(t2)

where the following natural language expression, “the
small blue circle above the big red square” is a valid
explanation for it. In the generation process of formal
situation representation, we consistently use the order
of object/relation/object where each object is described
as follows: size/color/shape.

2.2 Linguistic Utterances

A linguistic utterance, denoted as u, is a sequence of
words used to describe a formal representation of sit-
uations mentioned in Section 2.1. All linguistic utter-
ances in this data follow the grammar shown in Figure 2
with a vocabulary size of over 20 words. This grammar
generate utterances like: “the small blue circle”, “the
star”, and “the small yellow square above the medium
red hexagon”.

S — <Object> | <Object> <UpDown> <Object> |
<Object> to the <LeftRight> of <Object>

Object — the <Size><Color><Shape>

Size — big | medium | small | €

Color — red | blue | yellow | orange | green | purple |
Shape — circle | triangle | square | hexagon | star | ellipse
UpDown —  above | below

LeftRight —  right | left

Figure 2: Grammar used for utterance generation.

2.3 Situation-Utterances Alignment

To connect all valid utterances from the grammar
shown in Section 2.2 to a formal situation mentioned in
Section 2.1, we define a meaning transducer 7' which
receives an utterance u as input and generates a for-
mal representation of the utterance m. An example of
this transducer 7" is shown in Figure 3. Table 1 shows
examples of linguistic utterances and their formal rep-
resentations. For example, the utterance “the small cir-
cle” is mapped to shape and size predicates with the fol-
lowing predicates “sm1(t1), cil(t1)”, which is a valid
formal representation generated by the transducer 7. In
addition of building the dataset for the experiments pre-
sented in this paper, the teacher model uses this trans-
ducer T twofold: (1) determine if the utterance follows
the grammar and (2) generates the formal representa-
tion m from the learner utterance for feedback genera-
tion.

3 Language Acquisition Setup

The language acquisition framework presented here
aims to evaluate the influence of corrective feedback
in the development of a learner model’s capacity to de-
scribe various situations as well as its association of

circle:cil(ty)
square:sql(t;)

small:sm1(t;)  blue:bl1(t)
edium:mel(t;) red:rel(t;)

circle:cil(ty)
square:sql(t;)

the:e small:sm1(ty)
medium:mel(tz) red:rel(ty)

blue:bl1(ts)  circle:cil(ty)

square:sql(ts)

Figure 3: Meaning Transducer T'. This is an example
of the transducer which generates the formal represen-
tation of any utterance from the grammar.

each word to a corresponding predicate. The learner
receives formal situation representations which it uses
to produce a valid utterance that describes the situation.
The teacher model employs various feedback strategies
to choose an utterance from a set of valid utterances in
order to address any possible errors that said utterance
might have. Figure 4 shows an interaction between the
learner and the teacher.

3.1 Learner Model

The learner model is implemented as an Encoder-
Decoder model with Gated Recurrent Units
(GRU) (Cho et al.,, 2014; Sutskever et al., 2014)
that receives a situation s which is a sequence of
predicates as input and generates an utterance v which
is a sequence of words describing the situation. We
incorporate an attention module in the GRU archi-
tecture to improve learning the association between
words and predicates (Bahdanau et al., 2016). The
learner model uses cross-entropy (CE) loss between
the learner utterance and the perceived utterances
which are computed as follows:

T

l= —Zlogpw(yt|u<t,s) ey

t=1

where y = ¥, -+ ,¥y; is the ground truth utterance
(which is selected based on the feedback strategy), u
is the learner-generated utterance, and p,,, is the prob-
ability for generating the utterance given the situation
parameterized with w.

3.2 Teacher Model

The teacher in this experiment is not a neural model
rather is a predefined evaluator composed of an Evalu-
ation and Feedback Generation modules. The former
acquires the logical semantics of an utterance using
the transducer defined in Section 2.3 to determine the
validity of the utterance. The latter uses the logical
semantics of the utterance and the situation to select a
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Linguistic representation (u)

Formal representation (1m)

“the small circle”

“the small blue circle to the left of the big red square”
“the red square to the right of the blue circle”

“the circle to the left of the square”

sml(ty), cil(ty)

sml(tl), bll(tl), Cil(tl), l62(t1, tg), bil(tg), Tel(tg), Sql(tg)
bll(tl), Cil(tl), l€2(t2, tl), Tel(tz), sql(tz)

Cil(tl), leQ(tl, tg), Sql(tg)

Table 1:

Examples of linguistic utterances and their formal representations related to the situation s =

sm1(ty),bl1(t1), cil(t1),le2(t1, ta), bil(ta), rel(te), sql(ta).

Neural Learner (Seq-to-Seq)

(1)

Encoder

(5)
2 Decoder

A

A J

{sm1(t1), bl1{t1), cil(t1),

d

le2(t1,t2),
mel(t2), rel(t2), sql(t2)}

the yellow square

the big red square
(3

'] i

Formal situation
representation

pd

(3)

#  Evaluation

(4) | Feedback
"| Generation

Teacher

Figure 4: Interaction between learner and teacher models. (1) The situation’s formal representation is passed to the
learner’s Encoder. The image shown here is for visualization purposes, each situation is written in formal represen-
tation. (2) The encoded situation is passed to the Decoder. (3) The generated utterance by the decoder, is passed
to the Teacher’s evaluation module along with the situation. (4) The feedback generation module receives the situ-
ation representation if any error is detected. (5) The feedback generation module generates an utterance following
the feedback strategies mentioned in Section 3.3 so the learner uses it for training as a means of correction.

valid utterance corresponding to the situation.

Evaluation module. This module evaluates if an
utterance is part of the set of valid utterances corre-
sponding to the situation. It uses the transducer 7'
to classify an utterance as “syntax error”, “error in
meaning”, or “correct”. An utterance is classified as
“syntax error” when the transducer is unable to extract
a corresponding meaning from the utterance, “error
in meaning” when the meaning is extracted from the
transducer correctly but the utterance is not part of
the set of valid utterances for the current situation or
“correct” otherwise.

Feedback Generation module. This module selects
an utterance from the set of valid utterances from the
situation to provide corrective feedback whenever an
error is detected. This selection varies according to the
feedback strategies mentioned below.

3.3 Feedback Strategies

For each situation, there are multiple semantically
correct utterances that describe it. While the learner
model generates an utterance, the teacher model faces
the challenge of choosing an appropriate utterance
to correct the learner, while the teacher is not aware
of the learner’s intention (Lee et al., 2010). For this
paper, we propose three feedback strategies that the

teacher uses to select an utterance from the set of valid
utterances to provide feedback: full-length, random,
and lexical distance. We analyze the effect these
strategies have on the learner’s performance. Each of
these strategies shows different scenarios or outcomes
of each interaction. Table 2 shows examples on what
utterances the teacher provides according to each
strategy.

Full-Length Feedback. This strategy presents an
scenario where the teacher chooses an utterance that
provides a complete description of the situation. A
complete description contains two objects with all
of its properties (i.e. size, color, and shape) and a
relation between both objects. This allows a more
efficient learning of the association between words and
predicates present in the situation.

Random Feedback. This strategy presents a sce-
nario where the teacher provides randomly selected
corrections from a set of valid utterances corre-
sponding to the situation. This strategy allows the
learner model to be exposed to a wider distribution of
possible utterances that describe the observed situation.

Lexical Distance Feedback. This strategy shows
a targeted approach where the teacher identifies
errors from the learner’s utterance by measuring the
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minimum edit distance or lexical distance between
the learner utterance to some valid response, at a
word-level, which it then chooses a correction that is
grammatically different to the learner’s utterance while
preserving its intended meaning.

Full-length Random Lexical
FB FB Distance
FB
Learner | the small red | the big tri- | the  small
triangle to the | angle circle
right of the big
yellow triangle
Teacher | the small red | the triangle | the small
triangle to the | to the left | triangle
right of the big | of the small
orange triangle | triangle

Table 2: Example of learner utterances and teacher ut-
terances for the situation s = {bil(tl), orl(tl) trl1(tl),
le2(t1,t2), sm1(t2), rel1(t2), tr1(t2)} *FB: Feedback.

Lexical Distance Feedback can be interpreted as a
form of recast due to how it provides feedback while
keeping the original meaning of the learner utterance.
In terms of neural models, it helps to reduce larger
penalty using cross-entropy loss. While Full-length
feedback and Random Feedback can be interpreted as
reformulations, these feedback strategies can provide
utterances that could have a different meaning than the
learner’s utterance. With this, we explore whether pro-
viding these type of feedback affects the diversity of the
learner’s production of valid utterances. In other words,
providing feedback that has a wider range of possible
utterances like Random feedback allows the model to
generate different valid utterances than target feedback
like Lexical Distance Feedback which provides feed-
back with specific corrections.

3.4 Corrective Feedback Frequency

Another aspect that we are interested in exploring
is how the frequency in which feedback is provided
could affect the learner’s utterance production and
perception. To address this we propose two fre-
quency approaches: (a) Corrective (CO) and (b) Non-
Corrective (NC). Corrective feedback is the case which
the teacher only provides a feedback utterance when
the learner model generates an invalid utterance while
Non-Corrective feedback is the case where the teacher
always provides a feedback utterance regardless of the
validity of the learner’s utterance.

We want to observe whether the performance of
the model could affirm the assumptions that providing
feedback more frequently could lead to better perfor-
mance. There are discussions that providing limited
feedback on particular tasks is not sufficient to help an
individual correct any observed errors, while provid-
ing too much feedback can overwhelm an individual
and might lead them to make more errors. In our ex-
periments, we want to observe whether providing cor-
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rective feedback only when the learner’s utterance con-
tained errors could lead to similar or better performance
than providing non-corrective feedback. This could
help generate training paradigms that focuses on ad-
dressing the frequency and quality of feedback which
can reduce the amount of training data needed for lan-
guage learning tasks.

4 Experimental Settings

All learner models were implemented using Py-
torch (Paszke et al., 2019). The encoder and decoder
GRUs have a hidden size of 300. The situation inputs
are passed into a one-hot embedding layer forming a
context vector representation. We used the Adam op-
timizer with a learning rate of 0.001. All learner mod-
els are trained with 18,000 situation-utterance set pairs
and evaluated with 5,000 pairs. The learner’s evalua-
tion performance is recorded every 500 interactions.

4.1 Production setting

The goal of this setting is to observe how the feedback
strategies and frequency of feedback affect the learner’s
utterance generation. We aim to address the follow-
ing questions: (1) Can the learner provide a valid de-
scription of the situation? (2) Can the learner generate
all possible utterances for any given situation? To ad-
dress both of these questions, we propose two evalua-
tion metrics: Semantic Accuracy and Completeness.
Semantic Accuracy measures the model’s capacity to
produce an utterance whose formal representation is
accurate to the formal representation of the situation.
In other words, we want the learner to generate utter-
ances that preserve the meaning of the situation. We
observe the model’s utterance production development
where it computes the loss with a single feedback ut-
terance from the teacher model.

Completeness measures the rate of generated utter-
ances that are present in the set of valid utterances. We
want to see how many descriptions of a situation the
learner model can learn during interactions with the
teacher. The model uses a beam search approach to
generate top-k utterances where k = 40 and the beam
width to 22 (i.e. the vocabulary size). This technique
has been applied to various tasks like story generation
that require the generation of multiple sequences Fan
et al. (2018); Holtzman et al. (2019).

4.2 Perception setting

For this setting, we evaluate the learner’s capacity to
choose utterances that correctly describe a given situa-
tion over other utterances that have at least one error in
their description of the situation. Many psycholinguis-
tic studies have used a two-alternative forced choice
(2AFC) task to explore a child’s preference for relevant
objects for some linguistic stimuli (Gertner and Fisher,
2012; Bergelson and Swingley, 2012). This evalua-
tion has been adapted to evaluate computational models



for semantic evaluation of language models as the one
shown in Nikolaus and Fourtassi (2021b).

Using the situation-utterance set pairs discussed in
Section 2.3, we create triplet pairs x; = (8;,Ut, Uq),
where s; is the given situation, wu; is the target utter-
ance which is randomly selected from the set of valid
utterance for that situation, and u is a distractor utter-
ance that is similar to the target utterance, except that it
has one instance of the evaluated concept replaced with
another instance of the same concept.

For this task, we compute the probability of the tar-
get utterance given the situation and the distractor utter-
ance given the situation. If the probability for the target
utterance is greater than the probability of the distractor
utterance, we consider that the learner model has suc-
cessfully understood the evaluated concept. We train
the models with the same 18,000 situation-utterance set
pairs as the ones used in the production setting. For
each concept, we create a set of 5,000 triplets for eval-
uation. We record the learner’s performance after every
500 interactions.

5 Results

Syntactic Errors. Our model does not show any sig-
nificant amount of syntax errors after a few interac-
tions. Figure 5 shows the number of utterances that
were classified as “syntax error” by the teacher’s eval-
uation module for all models during the first 200 in-
teractions. After 30 interactions, we see that correc-
tive random feedback, non-corrective random feedback
and non-corrective lexical distance have all of its gener-
ated utterances during the evaluation classified as “syn-
tax error”. Later interactions, we see that syntax er-
rors become non-existent because the model is able to
generate utterances that follow the expected grammar.
Each learner model is initialized with the same ran-
dom seed to ensure the comparison on the effects of
each feedback strategy are from the same starting point.
This high syntax error after 30 interactions present a
point where the models were starting to get utterances
with repeated shape concepts at different position be-
fore learning that size and color concepts occur before
shape concepts, thus adjusting to the grammar.

Semantic Accuracy. Figure 6 shows the learner’s se-
mantic accuracy for each feedback strategy and feed-
back frequency. It is observed that corrective random
feedback and corrective lexical distance has higher
semantic accuracy than all other models while non-
corrective and corrective full-length feedback have the
lowest semantic accuracy. There were cases where the
learner model described the situation using one rela-
tion while the teacher provided a valid feedback with
the opposite relation. This causes confusion to the
model due to misaligned objects. For example, the
learner generated the utterance “the big red star to the
left of the small yellow circle” and the teacher pro-
vided “the small yellow circle to the right of the big red
star”. Corrective random feedback and lexical distance
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Figure 5: Syntax Errors for each feedback strategy with
corrective and non-corrective feedback for the first 200
interactions. All models are evaluated after every 10
interactions with 5000 situation-utterance pairs.

shows oscillations between interactions. We observed
that these feedback strategies provide utterances of dif-
ferent lengths more frequent than full-length feedback
which causes the learner model to fail to describe some
situations.
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Figure 6: Semantic Accuracy evaluation for each feed-
back strategy with corrective and non-corrective feed-
back.

As shown in Table 3 most models reach an accuracy
of sixty percent or more within the first 500 interac-
tions for lexical distance, 1000 interactions for random
feedback, and 3000 interactions for full-length feed-
back. Random feedback and lexical distance are the
only strategies that reach ninety percent semantic ac-
curacy. Corrective lexical distance feedback reaches
ninety percent after 500 interactions.

The learner trained with lexical distance feedback
strategy correctly generate valid utterances earlier than
other strategies because these generated utterances only
describe the shape of at least one object in the situa-
tion. On the other hand, full-length feedback expects
the learner model to describe the size, color, and shape

272



of both objects which requires more interactions for the
learner to successfully describe a situation following
this strategy.

All feedback strategies with corrective frequency are
able to reach each performance threshold with less in-
teraction than non-corrective frequency. This is inter-
esting because it shows that for this task, limiting the
amount of corrective feedback helps the learner gener-
ate more valid utterances for each situation.

learner \ accuracy 60 % 70% 80% 90%
full-length-co 3000-3500 | 7500-8000 | 17500-18000 -
full-length-nc 5000-5500 | 8500-9000 - -

random-co 1500-2000 | 1500-2000 | 2500-3000 2500-3000
random-nc 1000-1500 | 2000-2500 | 5000-5500 | 11500-12000

lexical-distance-co 0-500 0-500 0-500 0-500

lexical-distance-nc 0-500 0-500 1000-1500 -

Table 3: Number of interactions where the learner
model reached or exceeded certain semantic accuracy
threshold percentage. Since each model is evaluated
every 500 interactions, we show the interval range
where the model reached the specified accuracy per-
centage.

Completeness. Figure 7 shows the learner complete-
ness score at various interactions between the models.
It shows that non-corrective feedback strategies have
higher scores than corrective feedback strategies. Non-
corrective random feedback has the highest complete-
ness score at 55%, which means that the learner model
trained with this strategy and frequency was able to
generate around 20 different valid utterances. On the
other hand, corrective full-length feedback only gener-
ated 3 valid utterances which is approximately 7%.

100 A
w8 random-nc

Il |exical-distance-co
B |exical-distance-nc

mmm full-length-co
wzz full-length-nc
801 mmm random-co

60

40+

Completeness

201

3000 9000 15000 18000
Interactions

Figure 7: Completeness evaluation for each feedback
strategy with corrective and non-corrective feedback.

When comparing the completeness score and the
semantic accuracy, there is no indication that high
semantic accuracy also means high completeness.
Instead, we observed that full-length feedback had low
semantic accuracy and low completeness score. Also,
both random feedback and lexical distance feedback
had high semantic accuracy and high completeness.

A possible explanation for this lies on the diversity
of feedback utterances the learner receives. Random
feedback provides utterances of different lengths
whereas full-length feedback only provides one or two
utterances with the full description of the situation. We
can also argue that Lexical distance feedback is in the
middle in terms of performance because this strategy
selected utterances with minimal edit-distance to the
learner’s utterance, thus limiting the range of possible
utterances. We believe that exposing the learner to
different utterances are helpful for the learner model to
develop its set of utterances to describe each situation.

Perception Evaluation.

Figure 8 show the perception evaluation for every
concept with each feedback strategy and feedback fre-
quency. We observe that there is no significant dif-
ference between the corrective and non-corrective fre-
quency of each feedback strategy. Corrective full-
length feedback has the lowest shape accuracy and
highest size accuracy. We observe that corrective lexi-
cal distance has low accuracy for color, size, and rela-
tion concept during early interactions but increases its
accuracy to be on par with other feedback strategies.

All learner models are able to have concept accuracy
above 50%, therefore we could argue that these mod-
els are able to learn these concepts. There are some
cases where some models have difficulty learning cer-
tain concepts. One case is the relation concept where
all models have low accuracy. For example, full-length
feedback strategy, the learner has learned to generate an
utterance like "the big red star to the left of the small
orange circle" but the current concept evaluation test
expects a target utterance like "the small orange circle
to the right of the big red star". These utterances while
both equally valid, the learner model might not under-
stand the target utterance due to the positioning of the
objects. For random and lexical feedback, the learner
did not learn to generate utterances with relations.

6 Discussion

In the production setting, each feedback strategy
presents forms in which a teacher could provide feed-
back to a learner as guided responses, from describing
the full situation to rephrasing the utterance to correct
incorrect or missing concepts. The learner models had
a positive response to these guided types of responses
which yielded higher semantic accuracy. However, we
noticed that each model generated utterances of spe-
cific concept combinations. This is also supported by
the completeness evaluation which shows the set of ut-
terances the model is able to associate to each situa-
tion. Random feedback strategy generated utterances
of different length for each situation. These results in-
dicate that exposing the learner model to various feed-
back utterances across multiple situations can improve
the model’s semantic accuracy as well as completeness
score.
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Figure 8: Perception Task evaluation for all feedback strategies within the corrective and non-corrective setting.
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In the perception setting, we measure a model’s con-
cept accuracy which indirectly shows how the model
develops word-meaning associations when the model
successfully selects a target utterance which has the
correct use of a concept as well as correctly describing
the current situation. Each feedback strategy present a
constant concept accuracy throughout the interactions.

We analyzed aggregated attention maps during the
model’s production setting to measure the word-
meaning mappings were developed as new interactions
occurred. The maps for full-length feedback show that
this strategy help the learner model have strong one-
to-one association between concept words and their re-
spective predicates. For random feedback and lexical
distance feedback strategies, the models formed asso-
ciations between each word to multiple predicates cor-
responding to different concepts. Further details and
attention maps can be found in Appendix A

In addition to analyze attention maps, we observed
the error rates of every concept for each feedback strat-
egy. Overall, the error rates for each concept decreases
as the learner interacts with the teacher. Some strate-
gies like random and lexical distance feedback have
higher error rates at earlier interactions, they still de-
crease during later interactions. Additional details are
in Appendix B

Although the evaluation metrics in our experiments
aim to explore the acquisition of a natural language by
neural models, they are not sufficient and thus more
complex metrics are required. For a fair compari-
son between neural language acquisition and human
language acquisition, establishing cognitive plausible
neural architectures. By cognitive plausible, we mean
that neural models could emulate human-like process-
ing (Beinborn and Hollenstein, 2023). We believe that
this framework has potential to include additional met-
rics that can evaluate neural model learning and gain
insights to language acquisition theories.

7 Conclusion

This work proposes a framework to explore teacher-
learner interactions with corrective feedback within a
controlled environment using formal representations
of objects and their properties. We evaluate various
feedback strategies and their influence on the learner
model’s utterance generation for a given situation and
perception of different concepts like shape, color, size,
and relation present in a situation. These results show
that the learner models can generate a different subset
of valid utterances to describe a situation according to
the feedback strategy employed by the teacher. Some
strategies like random and lexical distance were use-
ful for the learner model to learn multiple utterances
whereas full-length only allowed the learner model to
learn 1-2 valid utterances. In terms of perception, some
models present challenges for certain concepts due to
unseen target utterances during concept evaluation that
were not provided by the teacher during training inter-

actions.

Given the reduced size of the vocabulary and the
concepts, the use of GRU was selected to better high-
light the main idea of creating a controlled framework
that could be insightful, in terms of production and
perception of a synthetic language, for the commu-
nity to study the challenges of language acquisition and
in-depth semantic evaluation of generated utterances.
Further study and technical developments are needed
to possibly incorporate newer neural models into this
framework. In this paper, the teacher’s feedback served
as the ground truth labels used by the learner model.
The learner model did not do any analysis or additional
processing of the teacher’s feedback which might limit
the effectiveness of feedback and interactions For fu-
ture work, we need to design procedures where the
learner model can interpret the teacher’s feedback and
use said interpretation in the production process. One
approach is to introduce mechanisms that allows the
learner model to use the formal representation of the
teacher’s utterance to incorporate semantics into the
loss function calculations.

8 Limitations

The framework has some limitations that need to be
addressed. First, this framework uses synthetic data
within a controlled environment. Natural language is
very complex, which makes it a challenging task to cre-
ate evaluation frameworks. Our data do not fully repre-
sent a natural language. Second, the proposed models
to evaluate the data are basic in design. Our models
rely on single-layer GRU with sequential formal rep-
resentations of situations. We need to explore the use
of this data on other models to have a wider panel of
performance for better comparison and evaluation. Al-
though our intent is to study child language acquisition,
our work does not have any empirical analysis between
the neural models and other studies involving actual
children. Our goal is to explore additional metrics and
evaluation settings in which this framework compares
neural learner models with human performance.
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A Word Learning Evaluation

Specifically, it shows the attention maps for each feed-
back strategy and feedback frequency after 18,000 in-
teractions.

The learner models trained with corrective full-
length feedback has strong word-predicate associations
for all concepts. For example, the model trained with
corrective full-length feedback shows that the word
“hexagon” has a strong association with the predi-
cate “hel” while having little to no association to any
other predicates. However, models trained with non-
corrective full-length feedback show weaker associa-
tions between words and predicates in the sense that
one word is associated to more than one predicate. For
example, the word “big” is associated to the predicates
“bil”as well as other color predicates like “yel”, “grl”,
and “rel”. Also, these models showed strong associa-
tions for the relation concept words “above” and “be-
low” to predicate “ab2” as defined in the grammar dis-
cussed in Section 2.2. Unfortunately, the model did
not present any strong associations between the words

“left” and “right” to the predicate “le2”. This could oc-
cur because the model was not provided with sufficent
feedback utterances that uses both of these relations.

Models trained with corrective random feedback, as
shown in Figure 9b, have strong associations for the
shape concepts. However, for color, size, and rela-
tions concepts, we see that the model has higher atten-
tion towards shape and relation predicates. For exam-
ple, the word “red” has associations to color predicates
like “st1”, “cil” and even relation predicates “ab2” and
“le2”. Possibly this model receives feedback utterances
that might contain instances of color and size concepts,
which are not required for an utterance to be valid, at
different positions thus making it difficult to fully ad-
just the attention weights. In Figure 9e shows that non-
corrective random feedback present the same issue.

Models trained with lexical distance feedback shows
that most words had strong association to relation pred-
icates. For example, the word “triangle” has high as-
sociation to the predicates “le2” and “ab2”. Also, we
observe that words of shape instances have high asso-
ciation to its corresponding predicate. Similarly to ran-
dom feedback, this strategy also has difficulty in prop-
erly update the attention weights for different concepts.
The model associates the words for sizes like “small”,
“medium”, and “big” to various shape predicates. The
same is observed for color concept which also associate
each color word to the shape predicates.

We can say that these attention maps are consis-
tent with the behavior of each feedback strategy. Full-
length feedback provide the full description of the
situation which makes the attention between words
and predicates simple to compute. Random and lex-
ical distance feedback provide utterances with partial
descriptions which can affect how certain words are
aligned to the situation. For example, the utterance
“the red circle” being aligned to the situation “bil(x1)
rel(x1) cil(x1l) le2(x1,x2) sm1(x2) orl(x2) tr1(x2)”
might align the word “red” to the predicate “bil” which
occurs before the predicate “rel”.

B Concept Error Rate Analysis.

We conducted an analysis of the frequency of con-
cept errors during the production evaluation. Table 4
shows the error rates (i.e., the number of concept errors
divided by the number of examples presented during
evaluation) for each concept across different interaction
periods. The relation concept had values lower than 1%
therefore were not included in this table. These results
indicate that the error rate trends depend on the feed-
back strategy employed as explained below.

Strategies with corrective feedback have a lower er-
ror rate than non-corrective feedback across all strate-
gies for all concepts. Also, we observe that for shape
and size concepts, full-length feedback has a decreas-
ing error rate as it interacts with the teacher model.
However this strategy has higher error rates for color
concepts. We hypothesize that the model generate ut-
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Figure 9: Aggregated attention maps for each feedback strategy and feedback frequency after all 18000 interac-
tions. This values are the average attention weights for 5000 evaluation interactions. Attention maps for feedback
strategies with corrective feedback, (a) Full-length feedback, (b) Random feedback, (c) Lexical Distance feedback.
Attention maps for feedback strategies with non-corrective feedback, (d) Full-length feedback, (e¢) Random feed-

back, (f) Lexical Distance feedback.

terances with shape instances, followed by utterances
with size and shape instances before learning color in-
stances. Also, we have cases where the learner receives
teacher feedback with the opposite relation from what
the learner generated. This causes the learner to learn
incorrect color instances for the intended object. An-
other thing to notice is that for random feedbaqck and
lexical distance feedback strategies, the error rates tend
to be lower than full-length feedback for early interac-
tions while presenting higher error rates at later interac-
tions. This occurs because both of these strategies are
trained with partial descriptions of a situation, unlike
full-length feedback, making them less prone to gener-
ate incorrect utterances.

For the relation concept, we observe that no errors
were detected due to the model either not generating
utterances that do not have any instances of relations or
the relation were correctly generated. For example, a
given situation could refer to a big star that is above a
small yellow square as "the big red star above the small
yellow square"” rather than "the small yellow square be-
low the big red star". These two sentences are both
valid, however, their relation concepts refers to the ob-
jects in opposite perspectives.

This shows how these models are able to minimize
the error rate in terms of utterance generation with
the corresponding concepts as the interactions with
the teacher increases. Although some models have a
large error rate at the early interactions, we believe that
these errors occur due to the utterances provided by
the teacher model which could be valid to describe the

given situation, but might not be fully aligned to what
the learner model intended to describe. An example
of this can be seen in the case of the color concept for
the corrective full-length feedback strategy where the
learner model attempts to describe "the big yellow cir-
cle" but the teacher model provides "the small blue star
above the medium yellow circle" which by our CE-loss,
it will train the learner to better learn to describe "the
small blue star".
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Shape Concept
500 | 2500 | 4500 | 6500 | 8500 | 10500 | 12500 | 14500 | 16500 | 18000
full-length-co 14.29 | 3.28 | 291 276 | 3.87 0.12 2.54 1.03 0.45 1.35
full-length-nc 11.87 | 3.11 1.01 3.18 1.93 1.64 1.15 1.83 3.14 1.87
random-co 15.00 | 9.37 1.65 | 7.51 1.21 0.76 1.88 2.93 0.75 0.34
random-nc 15.64 | 6.68 | 3.68 | 2.54 | 0.85 1.97 2.84 3.18 3.03 243
lexical-distance-co | 1522 | 8.15 | 12.11 | 8.27 | 1420 | 2.62 6.87 6.30 8.87 6.82
lexical-distance-nc | 11.06 | 9.55 | 12.70 | 995 | 5.39 6.73 4.11 8.08 9.49 7.60
Color Concept
500 | 2500 | 4500 | 6500 | 8500 | 10500 | 12500 | 14500 | 16500 | 18000
full-length-co 14.33 | 17.20 | 18.37 | 1991 | 21.65 | 23.94 | 22.55 | 2343 | 23.99 | 24.22
full-length-nc 12.83 | 18.97 | 21.36 | 21.14 | 22.81 | 22.62 | 23.23 | 23.36 | 22.57 | 23.28
random-co 10.07 | 3.89 | 5.88 | 13.01 | 5.59 4.19 6.97 9.83 224 7.69
random-nc 15770 | 6.59 | 1047 | 898 | 460 | 11.50 | 14.16 | 6.45 9.43 5.82
lexical-distance-co | 7.53 | 3.44 | 0.17 192 | 880 | 11.80 | 647 12.78 | 5.65 1.48
lexical-distance-nc | 13.40 | 6.62 | 594 | 5.16 | 13.72 | 9.12 11.78 | 5.21 6.45 10.46
Size Concept
500 | 2500 | 4500 | 6500 | 8500 | 10500 | 12500 | 14500 | 16500 | 18000
full-length-co 11.09 | 10.85 | 9.26 | 7.65 | 8.32 4.04 4.00 2.37 1.86 1.35
full-length-nc 12.07 | 8.66 | 642 | 523 | 241 4.10 3.97 2.27 3.29 2.81
random-co 892 | 14.16 | 18.66 | 6.07 | 20.05 | 20.97 | 18.03 | 13.51 | 20.53 | 17.48
random-nc 10.72 | 15.87 | 14.02 | 16.39 | 21.13 | 13.93 | 10.03 | 16.90 | 13.65 | 17.76
lexical-distance-co | 3.18 | 6.87 | 4.18 | 7.66 | 3.86 | 1397 | 12.10 | 6.02 11.02 | 16.01
lexical-distance-nc | 4.89 | 9.89 | 10.29 | 1092 | 8.36 | 10.13 | 9.68 | 11.94 | 9.54 7.50

Table 4: Error rates for each concept after training interactions. Measures the number of learner utterances classi-
fied as error in meaning due to the incorrect use of one of the concepts.
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