
Proceedings of the 14th Joint Conference on Lexical and Computational Semantics (*SEM 2025), pages 362–371
November 8-9, 2025 ©2025 Association for Computational Linguistics

SAG: Enhancing Domain-Specific Information Retrieval with
Semantic-Augmented Graphs

Carol-Luca Gasan and Vasile Păis,
Research Institute for Artificial Intelligence “Mihai Drăgănescu”, Romanian Academy

gasancarolluca@gmail.com, vasile@racai.ro

Abstract

Retrieval-Augmented Generation (RAG) sys-
tems rely on high-quality embeddings to re-
trieve relevant context for large language mod-
els. This paper introduces the Semantic-
Augmented Graph (SAG), a new architecture
that improves domain-specific embeddings by
capturing hierarchical semantic relationships
between text segments. Inspired by human in-
formation processing, SAG organizes content
from general to specific concepts using a graph-
based structure. By combining static embed-
dings with dynamic semantic graphs, it gener-
ates context-aware representations that reflect
both lexical and conceptual links. Experiments
on text similarity and domain-specific ques-
tion answering show that SAG consistently out-
performs standard embedding methods within
RAG pipelines.

1 Introduction

Retrieval-Augmented Generation (RAG) enhances
large language models by integrating relevant exter-
nal information during response generation. This
process relies on embedding models to convert text
into vector representations for efficient similarity-
based retrieval. While general-purpose embeddings
perform well across many domains, they often fall
short in specialized fields like medicine, law, or
technical writing, where semantic structures are
more complex and hierarchical. To address this
gap, we propose the Semantic-Augmented Graph
(SAG), a novel architecture designed to improve
domain-specific embeddings by modeling how hu-
mans organize knowledge. SAG converts unstruc-
tured text into a directed graph, with nodes rep-
resenting semantic units and edges encoding con-
textual relationships. These graphs are further op-
timized into subtrees that reflect domain-relevant
knowledge clusters, capturing both broad concepts
and detailed information.

SAG is particularly suited for environments with

limited computational resources, where large-scale
models are impractical. By enhancing static em-
beddings with graph-based structure, SAG achieves
an effective balance between efficiency and repre-
sentational power. The approach aligns with ongo-
ing efforts to reduce the energy and compute costs
of NLP systems, offering a scalable solution for
domain-adapted retrieval and reasoning.

The rest of the paper is structured as follows:
Section 2 reviews related work on embeddings and
RAG methods. Section 3 outlines the conceptual
foundation of our approach. Section 4 details the
SAG architecture and processing pipeline. Section
5 presents experimental results on semantic simi-
larity and question answering. Section 6 concludes
with future directions.

2 Related Work

Similarity search in high-dimensional vector spaces
is a core component of information retrieval and
knowledge discovery. Faiss (Johnson et al., 2019),
developed by Meta’s AI research team, is a widely
adopted library that enables scalable similarity
search and clustering. It supports both CPU and
GPU execution and implements efficient algo-
rithms using techniques like product quantization
and inverted indexing. Faiss allows rapid retrieval
from large datasets while supporting multiple dis-
tance metrics, making it a foundational tool for
retrieval-augmented systems.

Learning effective graph representations is es-
sential for tasks such as node classification, link
prediction, and clustering. Node2Vec (Grover and
Leskovec, 2016) addresses this by generating node
embeddings through biased random walks that cap-
ture various neighborhood structures. By preserv-
ing network proximity in the embedding space,
Node2Vec generalizes earlier methods and pro-
vides reliable performance across multiple graph-
based applications.

362

Evaluating retrieval-augmented generation sys-
tems in specialized domains like medicine re-
quires robust benchmarks. MIRAGE (Rajpurkar
et al., 2020) offers a comprehensive suite of medi-
cal question-answering datasets and an evaluation
framework designed to reflect realistic use cases.
Some of them are BioASQ (Tsatsaronis et al.,
2015), MedMCQA (Pal et al., 2022), MedQA-
USMLE (Marro et al., 2023), and MMLU-MED
(Hendrycks et al., 2021). Recent advances in
biomedical retrieval have leveraged contrastive
learning to improve semantic representations. Med-
CPT (Yuan et al., 2022) introduces a transformer
model trained with contrastive objectives to sup-
port zero-shot retrieval in the biomedical domain. It
achieves state-of-the-art results on standard bench-
marks by generating robust sentence embeddings
even in the absence of annotated training pairs.

Knowledge graphs provide structured represen-
tations of domain-specific information, support-
ing complex reasoning and query answering. In
the medical field, the traditional static knowledge
graphs are being replaced by adaptive systems that
incorporate large language models and domain-
specific retrieval tools. These systems automati-
cally extract entities, infer relationships, and build
query-specific graphs. Frameworks like AMG-
RAG (Wang et al., 2023) use these adaptive knowl-
edge graphs in retrieval-augmented pipelines, com-
bining evidence retrieval and reasoning to improve
accuracy and interpretability in medical question
answering.

3 Model’s Philosophy

SAG is inspired by the hierarchical structure of
human cognition, where knowledge is processed
from general principles to specific details. This
structure is especially prominent in expert domains,
where reasoning involves traversing semantic lay-
ers—from broad categories to precise instances.
We define information specificity as "the range of
knowledge from which a sentence is derivable".
General statements apply broadly, while specific
ones are valid in narrower contexts. Consider this
spectrum from the biomedical domain:

• General: “Medications are substances used to
treat medical conditions.”

• Intermediate: “Anticoagulants prevent blood
clot formation.”

• Specific: “Warfarin inhibits vitamin K epox-
ide reductase, preventing activation of clotting

factors II, VII, IX, and X.”

SAG operationalizes this cognitive structure as
a directed graph: nodes represent text chunks,
and edges encode general-to-specific relationships.
This graph captures domain-specific knowledge
hierarchies, which we leverage to produce semanti-
cally rich embeddings tailored for RAG systems.

4 SAG’s Pipeline

4.1 Data and Static Word Embeddings

We begin with unstructured domain-specific text,
segmented into semantically coherent chunks (here-
after called paragraphs). Tokenization is handled
using a standard English tokenizer with lowercas-
ing; we found no substantial benefit from domain-
specific tokenizers in our setup. Initial embed-
dings are drawn from pre-trained models such as
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), serving as a static foundation.
SAG then fine-tunes these representations through
graph-based enrichment. While domain-specific
embeddings can improve convergence speed, our
results show that SAG’s performance is ultimately
robust to the choice of initialization.

4.2 Generating initial graph

We aim to construct a directed graph where nodes
represent text paragraphs, and edges represent se-
mantic relationships between them. Initially, we
create a fully connected graph where each node cor-
responds to a paragraph. For every pair of nodes,
we calculate a similarity score using cosine similar-
ity between their static embeddings. Edges are only
preserved if their similarity exceeds a threshold τ
(empirically set to 0.5 in our experiments). The
edge weight is computed as:

wij =
(cos(p⃗i, p⃗j) + 1)/2− τ

1− τ
(1)

where p⃗i and p⃗j are the paragraph embeddings,
and the weight is mapped to the range [0, 1].

To compute paragraph embeddings, we use the
Smooth Inverse Frequency (SIF) weighting scheme.
SIF reduces the influence of common words and
emphasizes the importance of informative words
in the paragraph. The paragraph embedding p⃗i is
computed as:

p⃗i =
1

|Ti|
∑

t∈Ti

a

a+ f(t)
· t⃗ (2)

363

Figure 1: Overview on SAG’s pipeline

where Ti is the set of tokens in paragraph i, a is
a smoothing parameter (empirically set to 0.0002),
f(t) is the frequency of token t in the corpus, and
t⃗ is the token embedding.

In our experimental design, we deliberately se-
lected static word embeddings augmented with SIF
for paragraph representations, despite the availabil-
ity of various sentence and text embedding alter-
natives. This approach enables us to isolate and
highlight the architectural benefits of SAG itself,
rather than potentially obscuring its contributions
by applying it to already optimized state-of-the-
art models, which would make it difficult to dis-
tinguish between innate model performance and
SAG-derived improvements.

To transform this undirected similarity graph
into a directed graph that captures the general-to-
specific relationship, we use the SMOG readability
index (McLaughlin, 1969), which is particularly
effective for medical texts. The SMOG index pro-
vides a measure of textual complexity, which we
use as a proxy for specificity: higher SMOG scores
indicate more specific content, while lower scores
suggest more general content. The SMOG index is
calculated as:

SMOG = 1.043

√
Np

(
30

Ns

)
+ 3.1291 (3)

where Np is the number of polysyllabic words
(words with three or more syllables) and Ns is the
number of sentences.

For each pair of connected nodes (i, j), we com-
pute their respective SMOG scores si and sj , and
derive a directionality measure:

ci =
si

si + sj
, cj =

sj
si + sj

= 1− ci (4)

We then establish a directed edge from the node
with the lower c value (more general) to the node
with the higher c value (more specific). This pro-
cess transforms our similarity graph into a directed
graph that represents the flow from general to spe-
cific information.

4.3 Reducing the graph in size

The fully connected directed graph, while theoreti-
cally comprehensive, is computationally inefficient
and contains redundant information. Our goal is
to reduce this graph to a more manageable struc-
ture while preserving the most important semantic
relationships. Specifically, we aim to transform
the graph into a forest of directed trees, where each
tree represents a coherent subdomain of knowledge.
We employ a heuristic algorithm that combines
topological sorting with dynamic programming to
identify optimal subtrees, formally described in Al-
gorithm 1. The distinction between trees naturally
emerges from the semantic structure of the data,
without requiring explicit domain labels. Each tree
captures a semantic hierarchy from general to spe-
cific information within its subdomain.

364

Algorithm 1 Graph Reduction to Forest

1: procedure REDUCETOFOREST(G = (V,E))
2: Initialize visited[node]← 0 for all node ∈ V
3: Initialize stack ← []
4: function DFS(node)
5: visited[node]← 1
6: for each neighbor v of node in E do
7: if visited[v] = 0 then
8: DFS(v)
9: end if

10: end for
11: stack.append(node)
12: end function
13: for each node ∈ V do
14: if visited[node] = 0 then
15: DFS(node)
16: end if
17: end for
18: Reverse stack
19: Initialize costs[node]←∞ for all node
20: Initialize oset← sorted list of (∞, node, []) for all node
21: new_edges← []
22: while oset not empty do
23: (node, curr_cost, edges)← pop node with minimum cost from oset
24: if curr_cost =∞ then
25: curr_cost← 0
26: end if
27: costs[node]← curr_cost
28: for each (prev_node, edge_cost) in edges do
29: new_edges.append((prev_node, node, {weight : 1− edge_cost}))
30: end for
31: for each outgoing edge (node, neighbor, weight) in E do
32: if neighbor is still in oset then
33: if curr_cost+ weight < current cost of neighbor then
34: Update neighbor’s cost to curr_cost+ weight
35: Record path from node
36: else if curr_cost+ weight = current cost of neighbor then
37: Add alternative path from node
38: end if
39: end if
40: end for
41: end while
42: Replace G’s edges with new_edges
43: return G
44: end procedure

365

4.4 Computing updated word embeddings

With the optimized forest structure in place, we
now compute enhanced node embeddings that in-
corporate both the textual content and the graph
structure. We use Node2Vec to generate embed-
dings for each node in the forest, capturing the
structural relationships between paragraphs. For
individual tokens, we compute enriched embed-
dings by taking a weighted average of the node
embeddings for all paragraphs in which the token
appears:

t⃗new =
∑

i∈P (t)

ft,i∑
j∈P (t) ft,j

· n⃗i (5)

where P (t) is the set of paragraphs containing
token t, ft,i is the frequency of token t in paragraph
i, and n⃗i is the node embedding for paragraph i.

Rather than completely replacing the original
static embeddings, we merge them with these new
embeddings to preserve general semantic informa-
tion while incorporating domain-specific relation-
ships. The combined embeddings are computed
as:

t⃗final = [⃗tstatic; t⃗new] (6)

After merging the static and new embeddings,
the resulting dimensionality increases. To ensure
that the final embeddings match the original static
embeddings’ dimensionality (for seamless integra-
tion with existing systems), we apply dimensional-
ity reduction techniques. Specifically, we use the
method described in (Raunak et al., 2019) to reduce
the size of the word embeddings. The implementa-
tion can be seen in Algorithm 2.

4.5 Encoding logic

4.5.1 Single-Tree
The SAG encoding process integrates static and dy-
namic components to produce embeddings that cap-
ture both lexical content and structural semantics.
The static component uses a weighted average of
token embeddings with SIF weighting to downplay
common terms. The dynamic component incorpo-
rates domain-specific relationships by simulating a
walk through the semantic graph, as described in
Algorithm 3. The final embedding is a weighted
combination of the two:

e⃗ = pSAG · d⃗+ (1− pSAG) · s⃗ (7)

Algorithm 2 Dimensionality Reduction via PCA

1: Input: Data matrix Xtrain, components O, re-
duced dims N , desired comps D, words W

2: Output: Reduced embeddings t⃗final
3: Center data: Xtrain ← Xtrain −mean(Xtrain)
4: U1 ← PCA(Xtrain, O) ▷ First PCA: extract

main components
5: for each x ∈ Xtrain do
6: x← x−∑D

j=1 dot(U1[j]
T , x) · U1[j] ▷

Remove top D components
7: end for
8: Xtrain ← Xtrain −mean(Xtrain)
9: Xnew ← PCA(Xtrain, N) ▷ Project to N

dimensions
10: Xnew ← Xnew −mean(Xnew)
11: Xnew ← PCA(Xnew, N) ▷ Second PCA

refinement
12: for each i ∈ 1..W do
13: t⃗final[i] ← Xnew[i] −∑D

j=1 dot(Ufit[j]
T , Xnew[i]) · Ufit[j]

14: end for
15: Return t⃗final

where pSAG (typically 0.7) balances the influence
of the graph-based and lexical components.

4.5.2 Multiple-Trees

In practice, our graph reduction algorithm typically
produces multiple trees, each representing a dis-
tinct subdomain within the corpus. For each text
to be encoded, we identify the most relevant trees
(termed "master trees") based on token overlap.
Specifically, for a given text, we identify the top
k trees (where k =

√
|trees| by default) with the

highest token frequency overlap.
When comparing two texts, we compute sim-

ilarity scores for each tree in the union of their
respective master tree sets, with trees that appear
in both sets receiving double weight. The final
similarity score is:

sim(A,B) =

∑
t∈MA∪MB

wt · cos(e⃗tA, e⃗tB)∑
t∈MA∪MB

wt
(8)

where MA and MB are the sets of master trees
for texts A and B, e⃗tA and e⃗tB are the embeddings
of A and B with respect to tree t, and wt = 2 if
t ∈MA ∩MB and wt = 1 otherwise.

366

Algorithm 3 Dynamic Embedding Computation

1: procedure COMPUTEDYNAMICEMBEDDING(text,G, nodeEmb, tokenFreq)
2: tokens← tokenize(text)
3: span← tokens[0 : SPAN_SIZE], last← SPAN_SIZE
4: sumV ec←∑

t∈span tokenFreq[t]
5: currNode← argmaxn sumV ec[n], vecs← [nodeEmb[currNode]
6: temp← T0 ▷ Initial temperature
7: while last < |tokens| do
8: Update span and sumV ec with tokens[last]
9: last← last+ 1

10: steps← COMPUTESTEPS(span, tokenFreq), tmp← []
11: for 1 . . . steps do
12: With prob. ∝ e−1/temp, pick random neighbor of currNode
13: Otherwise, set currNode← argmax neighbor by sumV ec
14: temp← temp · λ
15: tmp.append(nodeEmb[currNode])
16: end for
17: vecs.append(tmp)
18: end while
19: return mean(vecs)
20: end procedure

4.6 Inference high-level methods

While the multiple-tree approach provides rich se-
mantic representations, it requires a custom simi-
larity function, which may not integrate seamlessly
with existing embedding-based tools and pipelines.
To address this, we propose a compact embedding
format that encapsulates the multi-tree information
within a single vector representation, facilitating
compatibility with standard similarity metrics.

4.6.1 Compact Embedding Formulation
Let T = {T1, T2, . . . , Tn} be the set of all trees
in our forest, and Mx ⊂ T be the set of master
trees for text x. The compact embedding c⃗x is con-
structed as a concatenation of three components:

c⃗x = [s⃗weighted
x ; e⃗specific

x ; e⃗general
x] (9)

where:

• s⃗
weighted
x = rsent · s⃗x represents the static com-

ponent weighted by rsent

• e⃗
specific
x = [pSAG · e⃗ix if Ti ∈ Mx else 0⃗]ni=1

represents the tree-specific embeddings for
master trees

• e⃗
general
x = [pSAG · e⃗ix]ni=1 represents the general

tree embeddings across all trees

The weighting factor rsent is computed as:

rsent =

{
2 · |Mx| · psent if |Mx| > 0

psent otherwise
(10)

where psent = 1− pSAG.

4.6.2 Theoretical Justification

The compact embedding design ensures that when
comparing two texts using standard cosine similar-
ity, the result approximates our weighted multi-tree
similarity. Consider the dot product between com-
pact embeddings of texts x and y:

c⃗x · c⃗y = r2sent (s⃗x · s⃗y)

+ p2SAG

n∑

i=1

(
1 + ITi∈Mx∩My

)
(e⃗ i

x · e⃗ i
y)

(11)
where I(·) is the indicator function and
I(A)I(B) = I(A ∩ B) was used to merge
the two sums.

When normalized by the magnitudes in the co-
sine similarity calculation, this approximates our
weighted multi-tree similarity Formula 8. The com-
pact embedding computation is implemented effi-
ciently as shown in Algorithm 4.

367

Algorithm 4 Compact Embedding Computation

1: procedure ENCODE(text, pSAG = 0.7, inference = True)
2: psent ← 1− pSAG

3: sent← ComputeStaticEmbedding(text)
4: sent← sent

||sent|| ▷ Normalize
5: masters, sag ← ComputeSAGVectors(text)
6: rsent ← 2.0 · |masters| · psent if |masters| > 0 else psent
7: sentPart← [rsent · sent]
8: specificPart← [pSAG · sag[i] if i ∈ masters else 0⃗ for i in range(|sag|)]
9: generalPart← [pSAG · x for x in sag]

10: if inference then
11: parts← [sentPart, specificPart, generalPart]
12: else
13: parts← [sentPart, generalPart, specificPart]
14: end if
15: result← []
16: for part ∈ parts do
17: for vector ∈ part do
18: result.extend(vector.flatten())
19: end for
20: end for
21: return array(result)
22: end procedure

4.7 Parameter Discussion

Parameters fall into training and inference cate-
gories. Training’s key factors are chunk size and
graph node count (controlling granularity/scale);
similarity threshold mainly reduces computation by
limiting edges without affecting structure. For in-
ference, embedding weight between static/dynamic
components is crucial and tunable per use case.
The 50-dim embeddings balance performance with
speed, aligning with typical subtree counts (6-
10); larger sizes showed comparable accuracy but
slower inference.

5 Experiments

We evaluated SAG on text similarity and RAG-
based question answering tasks. To optimize train-
ing data quality, we utilized the CRAFT 2.0 dataset
(Cohen et al., 2017) containing 67 full-text arti-
cles with around 560,000 tokens. Our training em-
ployed 1024 chunks of 512 tokens each with final
static embeddings of size 50.

5.1 Text Similarity

We evaluated SAG on two biomedical semantic tex-
tual similarity datasets: Clinical STS EBMSASS
(Hassanzadeh et al., 2019), containing 1,000 expert-

annotated clinical evidence pairs with 1-5 similarity
scores from biomedical abstracts, and BIOSSES
(Sogancioglu et al., 2017), comprising 100 sen-
tence pairs from biomedical articles with 0-4 simi-
larity scores focused on citation relationships. Eval-
uation employed a domain-specific pretrained Sen-
tence Transformer trained on the PubMed corpus
(Wheeler et al., 2002). Table 4 demonstrates SAG’s
state-of-the-art performance, exceeding both the
reference model and previous SOTA on BIOSSES,
and marginally outperforming the reference model
on EBMSASS.

5.2 Question Answering with RAG
We evaluated SAG on the MIRAGE benchmark
while considering two retrieval corpora: LoData
(medical textbooks and Statpearls (Publishing,
2025)) and HiData (25% of PubMed). Table
2 demonstrates that RAG augmented with SAG
consistently outperforms baseline approaches us-
ing Gemini 2.0 Flash. Notably, Table 5 indi-
cates SAG’s minimal computational overhead,
with reduced inference time and memory require-
ments in both single-threaded and accelerated en-
vironments, confirming its suitability for resource-
constrained deployments. SAG enhances standard
RAG pipelines to competitive levels with special-

368

Model Size Acc. (%) Chain-of-Thought Web-Search
Med-Gemini (Saab et al., 2024) 1800B 91.1 Yes Yes
GPT-4 (OpenAI, 2023) 1760B 90.2 Yes Yes
Gemini 2.0 Flash + RAG w/ SAG (HiData) 40B 87.7 Yes No
Med-PaLM 2 (Singhal et al., 2025) 340B 85.4 Yes No
Med-PaLM 2 (5-shot) (Singhal et al., 2025) 340B 79.7 Yes No
AMG-RAG (Wang et al., 2023) 8B 73.9 Yes Yes
Meerkat (Kim et al., 2024) 7B 74.3 Yes No
Meditron (Chen et al., 2023) 70B 70.2 Yes Yes
Flan-PaLM (Singhal et al., 2023) 540B 67.6 Yes No
LLAMA-2 (Chen et al., 2023) 70B 61.5 Yes No
Shakti-LLM (Shakhadri et al., 2024) 2.5B 60.3 No No
BioMedGPT (Luo et al., 2023) 10B 50.4 No No

Table 1: Recent results on MedQA-US.

Model BioASQ MedMCQA MedQA-US MMLU-MED Avg
RAG with SAG (HiData) 74.13 71.88 87.65 90.16 80.95
RAG with MedCPT (HiData) 66.55 69.43 84.23 85.71 76.48
RAG with SAG (LoData) 72.35 67.85 67.45 83.49 72.79
RAG with MedCPT (LoData) 65.12 66.73 65.42 79.96 69.31
No RAG 60.35 64.50 67.01 78.84 67.68

Table 2: Accuracy (%) on Question Answering Datasets using Gemini 2.0 Flash

Model Acc.
SAG (HiData) 71.88
AMG-RAG (Wang et al., 2023) 66.34
Meditron (Chen et al., 2023) 66.00
Codex 5-shot (Liévin et al., 2024) 59.70
VOD (Liévin et al., 2023) 58.30
PubmedBERT (Gu et al., 2021) 40.00

Table 3: Recent results on MedMCQA

Dataset SAG Reference SOTA
EBMSASS 85.84 85.62 –
BIOSSES 96.87 86.67 93.63

Table 4: Pearson Correlation (%) on biomedical STS
datasets

ized medical models, achieving 87.7% on MedQA-
USMLE (Table 1) and 71.88% on MedMCQA (Ta-
ble 3). These results demonstrate SAG’s efficacy as
a lightweight enhancement module enabling mod-
est LLMs to compete with state-of-the-art systems
in complex biomedical reasoning.

6 Conclusion and Future Work

This work presents the Semantic-Augmented
Graph (SAG), a new architecture that improves

Model Size Time S/A Memory S/A
SAG 124 MB 136/32 ms 1/7 KB
MedCPT 439 MB 350/62 ms 7/23 MB

Table 5: Inference Time and Memory Usage per 1k
tokens in (S)ingle-threaded and (A)ccelerated settings

domain-specific embeddings by organizing seman-
tic relationships hierarchically within a directed
graph. By structuring information from general
to specific concepts, SAG produces context-aware
embeddings while remaining more computation-
ally efficient than traditional deep learning meth-
ods. Experimental results show that SAG achieves
state-of-the-art performance on biomedical seman-
tic similarity benchmarks. When integrated into
a Retrieval-Augmented Generation system, it con-
sistently improves biomedical question-answering
performance while retaining its efficiency. Future
research may explore expanding SAG to general-
domain applications, adapting it for symbolic and
mathematical data, combining multiple embedding
sources through ensemble methods, and extending
the model to low-resource languages where effi-
cient learning is critical. We anticipate releasing
the code and related artifacts in the future to sup-
port reproducibility and further research.

369

7 Limitations

Despite the promising results, our study is sub-
ject to several limitations. First, due to hardware
constraints when processing large-scale graphs
with Python-based backend libraries, the Semantic-
Augmented Graph (SAG) was restricted to a maxi-
mum of 1024 nodes during training and inference.
Our implementation using NetworkX for graph
operations on million-edge structures faced mem-
ory and processing bottlenecks, despite running
on dual Intel Xeon Silver 4210 CPUs (2.20GHz,
40 total logical cores) and two NVIDIA GPUs
(Quadro RTX 6000/8000 and RTX 5000). While
the node limitation was sufficient for capturing
meaningful hierarchical structures, it may have pre-
vented deeper modeling of larger corpora. Sec-
ond, during RAG evaluation, only a quarter of the
full PubMed dataset was accessible, which may
have constrained the retrieval coverage and affected
downstream performance. These limitations high-
light potential gains from scaling SAG with more
efficient graph processing backends and accessing
larger retrieval corpora. As with any embedding-
based system applied in biomedical contexts, there
is a potential risk of encoding latent biases or pro-
ducing misleading similarity scores that may im-
pact downstream clinical decisions. We recom-
mend caution and further evaluation before deploy-
ment in real-world healthcare settings.

8 Acknowledgements

This research was in part sponsored by the NATO
Science for Peace and Security Programme under
grant id. G8648.

References
Mark Chen, Khaled Saab, Harsha Nori, Aakanksha

Chowdhery, Tiffany Kuo, Jure Lee, Joon Lee, Yi-
fan Zhang, Qian Jin, and Raj Patel. 2023. Meditron-
70b: Scaling medical pretraining for large language
models. arXiv preprint arXiv:2311.00000.

K. Bretonnel Cohen, Karin Verspoor, Karën Fort,
Christopher Funk, Michael Bada, Martha Palmer,
and Lawrence E. Hunter. 2017. The colorado richly
annotated full text (craft) corpus: Multi-model anno-
tation in the biomedical domain. In Nancy Ide and
James Pustejovsky, editors, Handbook of Linguistic
Annotation, pages 1379–1394. Springer Netherlands,
Dordrecht.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-

ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 855–864. ACM.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jian-
feng Gao, and Hoifung Poon. 2021. Pubmedbert:
A domain-specific language model for biomedical
text. arXiv preprint arXiv:2007.15779.

Hamed Hassanzadeh, Tudor Groza, and Jane Hunter.
2019. Ebmsass: Evidence-based medicine sentence
similarity dataset. In Proceedings of the 10th ACM
Conference on Bioinformatics, Computational Biol-
ogy, and Health Informatics, pages 652–657.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Zou, Dawn Lee, Dawn
Tang, Dawn Song, Jacob Steinhardt, Justin Gilmer,
Erica Ma, Gaurav Sastry, Andy Tran, Xander Wang,
Andy Miller, Alexander D’Amour, Andrew Lohn,
David Krueger, and 23 others. 2021. Measuring mas-
sive multitask language understanding. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 34, pages 23711–23723.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Jinhyuk Kim, Wonjin Kim, Jinhyuk Lee, Joongbo
Lee, Kyunghyun Lee, Sunghwan Yoon, and Jaewoo
Kang. 2024. Meerkat: A medical reasoning bench-
mark for large language models. arXiv preprint
arXiv:2402.00000.

Valentin Liévin, Charlotte E Hother, and Ole Winther.
2023. Vod: Visual open-domain question answering.
arXiv preprint arXiv:2305.00000.

Valentin Liévin, Charlotte E Hother, and Ole Winther.
2024. Can large language models reason about medi-
cal questions? npj Digital Medicine.

Ruijie Luo, Yuan Li, Yuxuan He, Yuxian Wang, Xiao-
dan Zhang, Shijie Wang, Shuo Zhang, Xiaozhi Liu,
Zhiyuan Liu, and Maosong Sun. 2023. Biomedgpt:
A unified and generalist biomedical generative pre-
trained transformer for biomedical text, image, and
cross-modal tasks. arXiv preprint arXiv:2306.00000.

Stefano Marro, Benjamin Molinet, Elena Cabrio, and
Serena Villata. 2023. Natural language explanations
for clinical case retrieval. In Artificial Intelligence in
Medicine. Springer.

G. Harry McLaughlin. 1969. Smog grading: A new
readability formula. Journal of Reading, 12:639–
646.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR) Workshops.

370

https://doi.org/10.1007/978-94-024-0881-2_53
https://doi.org/10.1007/978-94-024-0881-2_53
https://doi.org/10.1007/978-94-024-0881-2_53
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

OpenAI. 2023. Gpt-4 technical report. ArXiv preprint
arXiv:2303.08774.

Ankit Pal, Logesh Kumar Umapathi, and Malaikan-
nan Sankarasubbu. 2022. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical do-
main question answering. In Conference on Health,
Inference, and Learning, pages 248–260. PMLR.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543.

StatPearls Publishing. 2025. Statpearls [internet]. On-
line medical reference, regularly updated. Available
from: https://www.statpearls.com/.

Pranav Rajpurkar, Emily Chen, Bridget McCall, Raj
Patel, Jenny Liu, Jeremy Irvin, James Zou, Ross
Jones, Nikhil Kohli, Tony Duan, and Daisy Ding.
2020. Mirage: A large-scale medical qa benchmark
for robustness and generalization. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word embed-
dings. In Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP (RepL4NLP-2019),
pages 235–243, Florence, Italy. Association for Com-
putational Linguistics.

Khaled Saab, Harsha Nori, Aakanksha Chowdhery,
Tiffany Kuo, Jure Lee, Joon Lee, Yifan Zhang, Qian
Jin, Raj Patel, and Percy Liang. 2024. Capabili-
ties of gemini models in medicine. arXiv preprint
arXiv:2404.18416.

A Shakhadri, S Sahoo, S Saha, A Kumar, S Kumar,
A Gupta, and A Sharma. 2024. Shakti-llm: An open-
source large language model for indian languages.
arXiv preprint arXiv:2403.00000.

Karan Singhal, Shekoofeh Azizi, Tong Tu, Soroush
Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Hunter Cole, Joon Lee,
and Zachary Bradshaw. 2023. Large language
models encode clinical knowledge. Nature.
Doi:10.1038/s41586-023-05881-4.

Karan Singhal, Shekoofeh Azizi, Tong Tu, Soroush
Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Hunter Cole, Joon Lee, and
Zachary Bradshaw. 2025. Toward expert-level medi-
cal question answering with large language models.
Nature. Doi:10.1038/s41586-024-07366-5.

Gizem Sogancioglu, Hakime Öztürk, and Arzucan
Özgür. 2017. Biosses: A semantic sentence simi-
larity estimation system for the biomedical domain.
Bioinformatics, 33(14):i49–i58.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, John Pavlopoulos, Theofanis Karaletsos, Nicolas
Baskiotis, Patrick Gallinari, Thierry Artiéres, Axel-
Cyrille Ngonga Ngomo, Niko Heino, Eric Gaussier,
Laura Barrio-Alvers, and 2 others. 2015. Bioasq: A
challenge on large-scale biomedical semantic index-
ing and question answering. Journal of Biomedical
Informatics, 57:1–7.

Yifan Wang, Linjun Zhang, Yichong Liu, Yichao Zhang,
Jimmy Lin, Buzhou Tang, Xiaodan Wang, Hua Xu,
Fei Wang, and Yulan He. 2023. Amg-rag: Adaptive
medical graphs for retrieval-augmented generation.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (ACL).

David L. Wheeler, Deanna M. Church, Scott Federhen,
Alex E. Lash, Thomas L. Madden, Joan U. Pontius,
Gregory D. Schuler, Lynn M. Schriml, Eduardo Se-
queira, Tatiana A. Tatusova, and Lisbeth Wagner.
2002. Pubmed: the bibliographic database. Nucleic
Acids Research, 30(1):61–65.

Hongyin Yuan, Kai Sun, Qingyu Yu, Buzhou Tang, Xi-
aolong Wang, Bin Wang, Xiaodan Wang, Yanshan
Zhang, Hua Xu, Fei Wang, Yulan He, and Fei Wang.
2022. Medcpt: Contrastive pre-training for biomedi-
cal retrieval. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL).

371

https://doi.org/10.18653/v1/W19-4328
https://doi.org/10.18653/v1/W19-4328
https://pubmed.ncbi.nlm.nih.gov/11752244/

